Skip to main content
Log in

Strategy to improve crude oil biodegradation in oligotrophic aquatic environments: W/O/W fertilized emulsions and hydrocarbonoclastic bacteria

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

We studied petroleum biodegradation by biostimulation by using water in oil in water (W/O/W) double emulsions. These emulsions were developed using seawater, canola oil, surfactants, and mineral salts as sources of NPK. The emulsions were used in the simulation of hydrocarbon bioremediation in oligotrophic sea water. Hydrocarbon biodegradation was evaluated by CO2 emissions from microcosms. We also evaluated the release of inorganic nutrients and the stability of the emulsion’s droplets. The double emulsions improved CO2 emission from the microcosms, suggesting the increase in the hydrocarbon biodegradation. Mineral nutrients were gradually released from the emulsions supporting the hydrocarbon biodegradation. This was attributed to the formation of different diameters of droplets and therefore, varying stabilities of the droplets. Addition of the selected hydrocarbonoclastic isolates simulating bioaugmentation improved the hydrocarbon biodegradation. We conclude that the nutrient-rich W/O/W emulsion developed in this study is an effective biostimulation agent for bioremediation in oligotrophic aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086

    CAS  PubMed  Google Scholar 

  2. Rodrigues EM, Tótola MR (2015) Petroleum: from basic features to hydrocarbons bioremediation in oceans. OALib. 2:1–17

    Google Scholar 

  3. Sørensen L, Rogers E, Altin D, Salaberria I, Booth AM (2020) Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. Environ Pollut 258:113844

    PubMed  Google Scholar 

  4. Laffon B, Rabade T, Pasaro E, Mendez J (2006) Monitoring of the impact of Prestige oil spill on Mytilus galloprovincialis from Galician coast. Environ Int 32:342e348

    Google Scholar 

  5. Frantzen M, Hansen BH, Geraudie P, Palerud J, Falk-Petersen I-B, Olsen GH, Camus L (2015) Acute and long-term biological effects of mechanically and chemically dispersed oil on lumpsucker (Cyclopterus lumpus). Mar Environ Res 105:8–19

    CAS  PubMed  Google Scholar 

  6. Tate PT, Shin WS, Pardue JH, Jackson WA (2011) Bioremediation of an experimental oil spill in a coastal Louisiana salt marsh. Water Air Soil Pollut 223:1115–1123

    Google Scholar 

  7. Bao MT, Wang LN, Sun PY, Cao LX, Zou J, Li YM (2012) Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Mar Pollut Bull 64:1177–1185

    CAS  PubMed  Google Scholar 

  8. Goswami M, Chakraborty P, Mukherjee K, Mitra G, Bhattacharyya P, Dey S (2018) Bioaugmentation and biostimulation: a potential strategy for environmental remediation. J Microbiol Exp 6:223–231

    Google Scholar 

  9. Aburto-Medina A, Adetutu EM, Aleer S, Weber J, Patil SS, Sheppard PJ, Ball AS, Juhasz AL (2015) Comparison of indigenous and exogenous microbial populations during slurry phase biodegradation of long-term hydrocarbon-contaminated soil. Biodegradation 23:813–822

    Google Scholar 

  10. Rodrigues EM, Kalks KHM, Fernandes PL, Tótola MR (2015) Bioremediation strategies of hydrocarbons and microbial diversity in the Trindade Island shoreline – Brazil. Mar Pollut Bull 101:517–525

    CAS  PubMed  Google Scholar 

  11. Roy A, Dutta A, Pal S, Gupta A, Sarkar J, Chatterjee A, Saha A, Sarkar P, Sar P, Kazy SK (2018) Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresour Technol 253:22–32

    CAS  PubMed  Google Scholar 

  12. Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Crawford RL, Rosenberg E (2012) Bioremediation. In: Rosenberg E, DeLong E, Thompson F, Lorey S, Stackebrandt E (eds) The prokaryotes, 4th ed. Springer, New York

    Google Scholar 

  14. Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27:191–194

    CAS  PubMed  Google Scholar 

  15. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gutierrez T (2019) Occurrence and roles of the obligate hydrocarbonoclastic bacteria in the ocean when there is no obvious hydrocarbon contamination. In: McGenity T (ed) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes, Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-030-14796-9_14

    Chapter  Google Scholar 

  17. Fehler SWG, Light RJ (1970) Biosynthesis of hydrocarbons in Anabaena variabilis. Incorporation of [methyl-14C] and [methyl-2H] methionine into 7- and 8-methylheptadecane. Biochemistry-US. 9:418–422

    CAS  Google Scholar 

  18. Sharkey TD (1996) Isoprene synthesis by plants and animals. Endeavour 20:74–78

    CAS  PubMed  Google Scholar 

  19. Prince RC (2005) The microbiology of marine oil spill bioremediation. In: Ollivier B, Magot M (eds) Petroleum Microbiology. ASM Press, Washington, D.C., pp 317–336

    Google Scholar 

  20. Abbasnezhad H, Gray M, Foght JM (2011) Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol 92:653–675

    CAS  PubMed  Google Scholar 

  21. Poddar K, Sarkar D, Sarkar A (2019) Construction of potential bacterial consortia for efficient hydrocarbon degradation. Int Biodeterior Biodegradation 144:104770

    Google Scholar 

  22. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    CAS  PubMed  Google Scholar 

  23. Ghosh I, Mukherji S (2016) Diverse effect of surfactants on pyrene biodegradation by a Pseudomonas strain utilizing pyrene by cell surface hydrophobicity induction. Int Biodeterior Biodegradation 108:67–75

    CAS  Google Scholar 

  24. Halecký M, Kozliak E (2020) Modern bioremediation approaches: use of biosurfactants, emulsifiers, enzymes, biopesticides, GMOs. In: Filip J, Cajthaml T, Najmanová P, Černík M, Zbořil R (eds) Advanced Nano-Bio Technologies for Water and Soil Treatment, Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-29840-1_24

    Chapter  Google Scholar 

  25. Rosenberg E, Legman R, Kushmaro A, Adler E, Abir H, Ron EZ (1996) Oil bioremediation using insoluble nitrogen source. J Biotechnol 15:273–278

    Google Scholar 

  26. Koren O, Knezevic V, Ron EZ, Rosenberg E (2003) Petroleum pollution bioremediation using water-insoluble uric acid as the nitrogen source. Appl Environ Microbial 69:6337–6339

    CAS  Google Scholar 

  27. Warr LN, Friese A, Schwarz F, Schauer F, Portier RJ, Basirico LM, Olson GM (2013) Bioremediating oil spills in nutrient poor ocean water using fertilized clay mineral flakes: some experimental constraints. Biotechnol Res Int. https://doi.org/10.1155/2013/704806

  28. Edwards BR, Reddy CM, Camilli R, Carmichael CA, Longnecker K, Van Mooy BAS (2011) Rapid microbial respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico. Environ Res Lett 6:e035301

    Google Scholar 

  29. Leal-Calderon F, Homer S, Goh A, Lundin L (2012) W/O/W emulsions with high internal droplet volume fraction. Food Hydrocolloid 27:30–41

    CAS  Google Scholar 

  30. Muschiolik G, Dickinson E (2017) Double emulsions relevant to food systems: preparation, stability, and applications. Compr Rev Food Sci F 16:532–555

    CAS  Google Scholar 

  31. Khan BA, Akhtar N, Khan HMS, Waseem K, Mahmood T, Rasul A, Iqbal M, Khan H (2011) Basics of pharmaceutical emulsions: a review African. J Pharm Pharmacol 5:2715–2725

    CAS  Google Scholar 

  32. Chong D, Liu X, Ma H, Huang G, Han Y, Cui X, Yan J, Xu F (2015) Advances in fabricating double-emulsion droplets and their biomedical applications. Microfluid Nanofluid 19:1071–1090. https://doi.org/10.1007/s10404-015-1635-8

    Article  CAS  Google Scholar 

  33. Sapei L, Naqvi MA, Rousseau D (2012) Stability and release properties of double emulsions for food applications. Food Hydrocolloid. 27:316–323

    CAS  Google Scholar 

  34. Rodrigues EM, Kalks KHM, Tótola MR (2015) Prospect, isolation, and characterization of microorganisms for potential use in cases of oil bioremediation along the coast of Trindade Island. Braz J Environ Manag 156:15–22

    CAS  Google Scholar 

  35. Mehlich A (1953) Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil. Test Division (Mimeo). Raleigh, NC

  36. Bremmer JM, Mulvaney CS (1982) Total nitrogen. Agron. Monogr. Methods of soil analysis. Part, 2. 9, 595-622

  37. Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análises de solo, plantas e outros materiais. Porto Alegre, Universidade Federal do Rio Grande do Sul, 1995. 174p. (Boletim Técnico, 5)

  38. Al-Darbi MM, Saeed NO, Islam MR (2005) Biodegradation of natural oils in seawater. Energy Source 27:19–34

    CAS  Google Scholar 

  39. Fukuda K, Soderman O, Lindman B, Shinoda K (1993) Microemulsions formed by alkyl polyglucosides and an alkyl glycerol ether. Langmuir. 9:2921–2925

    CAS  Google Scholar 

  40. Muschiolik G (2007) Multiple emulsions for food use. Curr Opin Colloid Inface Sci 12:213–220

    CAS  Google Scholar 

  41. Cole ML, Whateley TL (1997) Release rare profiles of theophylline and insulin from stable multiple W/O/W emulsions. J Control Release 49:51–58

    CAS  Google Scholar 

  42. Cournarie F, Savelli MP, Rosillio V, Bretez F, Vauthier C, Grossiord JL, Seiller M (2004) Insulin-loaded W/O/W multiple emulsions: comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil. Eur J Pharm Biopharm 58:477–482

    CAS  PubMed  Google Scholar 

  43. Laugel C, Baillet A, Youenang MP, Marty JP, Ferrier D (1998) Oil-water-oil multiple emulsions for prolonged delivery of hydrocortisone after topical application: comparison with simple emulsions. Int J Pharm 160:109–117

    Google Scholar 

  44. Bourganis V, Kammona O, Alexopoulos A, Kiparissides C (2018) Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 128:337–362

    CAS  PubMed  Google Scholar 

  45. Tedajo GM, Bouttier S, Fourniat J, Grossiord JL, Marty JP, Seiller M (2005) Release of antiseptics from the aqueous compartments of a W/O/W multiple emulsion. Int J Pharm 288:63–72

    CAS  PubMed  Google Scholar 

  46. Ali A, Igbal S, Ilyas A, Khan H, Asad MHHB, Fatima N, Akhtar N (2019) Anti-pollution cosmetic-based one-step formation of w/o/w multiple emulsion containing D-biotin for skin protection: fabrication and in vitro and in vivo evaluation. Drug Deliv Transl Res 9:1117–1132

    CAS  PubMed  Google Scholar 

  47. Nik AM, Wright AJ, Corredig M (2010) Interfacial design of protein-stabilized emulsions for optimal delivery of nutrients. Food Funct 1:141–148

    Google Scholar 

  48. O’Regan J, Mulvihill DM (2010) Sodium caseinate-maltodextrin conjugate stabilized double emulsions: encapsulation and stability. Food Res Int 43:224–231

    Google Scholar 

  49. Chengyu G, Caibiao H, Chaolong M, Qiao F, Tingkang X, Qiang X (2016) Development and characterization of solid lipid microparticles containing vitamin C for topical and cosmetic use. Eur J Lipid Sci Technol. https://doi.org/10.1002/ejlt.201500373

  50. Huang H, Belwal T, Aalim H, Li L, Lin X, Liu S, Ma C, Li Q, Zou Y, Luo Z (2019) Protein-polysaccharide complex coated W/O/W emulsion as secondary microcapsule for hydrophilic arbutin and hydrophobic coumaric acid. Food Chem 300:125171

    CAS  PubMed  Google Scholar 

  51. Atlas RM (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng X, Zeng Y, Guo Z, Zhu L (2014) Diffusion of nitrogen and phosphorus across the sediment-water interface and in seawater at aquaculture areas of Daya Bay, China. Int J Environ Res Public Health 11:1557–1572

    PubMed  PubMed Central  Google Scholar 

  53. Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. https://doi.org/10.4061/2011/941810

  54. Garti N (1997) Double emulsions - scope, limitations and new achievements. Colloid Surface A 123:233–246

    Google Scholar 

  55. Scherze I, Knoth A, Muschiolik G (2006) Effect of emulsification method on the properties of lecithin- and PGPR-stabilized water-in-oil-emulsions. J Disper Sci Technol 27:427–434

    CAS  Google Scholar 

  56. Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214

    CAS  PubMed  Google Scholar 

  57. Zeinali M, Vossoughi M, Ardestani SK, Babanezhad E, Masoumian M (2007) Hydrocarbon degradation by thermophilic Nocardia otitidiscaviarum strain TSH1: physiological aspects. J Basic Microb 47:534–539

    CAS  Google Scholar 

  58. Rubtsova EV, Kuyukina MS, Ivshina IB (2012) Effect of cultivation conditions on the adhesive activity of Rhodococcus cells towards n-Hexadecane. Appl Biochem Microb 48:452–459

    CAS  Google Scholar 

  59. McFarlin KM, Prince RC, Perkins R, Leigh MB (2014) Biodegradation of dispersed oil in arctic seawater at -1uC. PLoS One 9:e84297

    PubMed  PubMed Central  Google Scholar 

  60. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ. Sci. Technol. 45:6709–6715

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bianco F, Race M, Papirio S, Esposito G (2020) Removal of polycyclic aromatic hydrocarbons during anaerobic biostimulation of marine sediments. Sci Total Environ 709:136141

    CAS  PubMed  Google Scholar 

  62. Kuppusamy S, Maddela NR, Megharaj M, Venkateswarlu K (2020) Approaches for remediation of sites contaminated with total petroleum hydrocarbons. Total Petroleum Hydrocarbons, In. https://doi.org/10.1007/978-3-030-24035-6_7

    Book  Google Scholar 

  63. Xu Y, Lu M (2010) Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater 183:395–401

    CAS  PubMed  Google Scholar 

  64. Al-Kindi S, Abed RMM (2016) Comparing oil degradation efficiency and bacterial communities in contaminated soils subjected to biostimulation using different organic wastes. Water Air Soil Pollut 227:36

    Google Scholar 

  65. Al-Saleh E, Hassan A (2016) Enhanced crude oil biodegradation in soil via biostimulation. Int J Phytoremed. https://doi.org/10.1080/15226514.2016.1146223

  66. Nikolopoulou M, Pasadakis N, Kalogerakis N (2007) Enhanced bioremediation of crude oil utilizing lipophilic fertilizers. Desalination 211:286–295

    CAS  Google Scholar 

  67. Lindstrom JE, Prince RC, Clark JC, Grossman MJ, Yeager TR, Braddock JF, Brown EJ (1991) Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl Environ Microbiol 57:2514–2522

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Button DK, Robertson BR, McIntosh D, Juttner F (1992) Interactions between marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez oil spill. Appl Environ Microbiol 58:243–251

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nikolopoulou M, Kalogerakis N (2008) Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses. Mar Pollut Bull 56:1855–1861

    CAS  PubMed  Google Scholar 

  70. Alkatib MA, Alam MDZ, Muyibi AS, Husain AF (2011) An isolated bacterial consortium for crude oil biodegradation. Afr J Biotechnol doi 10:18763–18767

    Google Scholar 

  71. Rodrigues EM, Freitas FS, Siqueira TP (2018) Detection of horizontal transfer of housekeeping and hydrocarbons catabolism genes in bacterial genus with potential to application in bioremediation process. Open Access Library J 5:e4454

    Google Scholar 

  72. Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are thankful to the Brazilian Navy, FAPEMIG, and CAPES.

Funding

This work was supported by the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico- CNPq), which provided all approvals, permits (project grant number 405544/2012-0), and authorization access to genetic resources (process number 010645/2013-6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edmo Montes Rodrigues or Marcos Rogério Tótola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: LUCY SELDIN.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, E.M., de Carvalho Teixeira, A.V.N., Cesar, D.E. et al. Strategy to improve crude oil biodegradation in oligotrophic aquatic environments: W/O/W fertilized emulsions and hydrocarbonoclastic bacteria. Braz J Microbiol 51, 1159–1168 (2020). https://doi.org/10.1007/s42770-020-00244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00244-x

Keywords

Navigation