Skip to main content

Advertisement

Log in

Evaluation of two transformation protocols and screening of positive plasmid introduction into Bacillus cereus EB2, a gram-positive bacterium using qualitative analyses

  • Bacterial Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Both Gram-positive and Gram-negative bacteria can take up exogenous DNA when they are in a competent state either naturally or artificially. However, the thick peptidoglycan layer in Gram-positive bacteria’s cell wall is considered as a possible barrier to DNA uptake. In the present work, two transformation techniques have been evaluated in assessing the protocol’s ability to introduce foreign DNA, pBBRGFP-45 plasmid which harbors kanamycin resistance and green fluorescent protein (GFP) genes into a Gram-positive bacterium, Bacillus cereus EB2. B. cereus EB2 is an endophytic bacterium, isolated from oil palm roots. A Gram-negative bacterium, Pseudomonas aeruginosa EB35 was used as a control sample for both transformation protocols. The cells were made competent using respective chemical treatment to Gram-positive and Gram-negative bacteria, and kanamycin concentration in the selective medium was also optimized. Preliminary findings using qualitative analysis of colony polymerase chain reaction (PCR)-GFP indicated that the putative positive transformants for B. cereus EB2 were acquired using the second transformation protocol. The positive transformants were then verified using molecular techniques such as observation of putative colonies on specific media under UV light, plasmid extraction, and validation analyses, followed by fluorescence microscopy. Conversely, both transformation protocols were relatively effective for introduction of plasmid DNA into P. aeruginosa EB35. Therefore, this finding demonstrated the potential of chemically prepared competent cells and the crucial step of heat-shock in foreign DNA transformation process of Gram-positive bacterium namely B. cereus was required for successful transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnsborg O, Eldholm V, Havarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158:767–778. https://doi.org/10.1016/j.resmic.2007.09.004

    Article  CAS  PubMed  Google Scholar 

  2. Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746 https://jb.asm.org/content/jb/81/5/741.full.pdf. Accessed 12 Apr 2017.

  3. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. https://doi.org/10.1016/S0022-2836(83)80284-8

    Article  CAS  PubMed  Google Scholar 

  4. Laurenceau R, Péhau-Arnaudet G, Baconnais S, Gault J, Malosse C, Dujeancourt A, Campo N, Chamot-Rooke J, Le Cam E, Claverys J-P, Fronzes R (2013) A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS Pathog 9(6):e1003473. https://doi.org/10.1371/journal.ppat.1003473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Das S, Dash HR (2015) Chapter 2: cloning and transformation. Microbial Biotechnology - a Laboratory Manual for Bacterial Systems. Springer, India. pp. 35–44. https://doi.org/10.1007/978-81-322-2095-4_2

  6. Belliveau BH, Trevors JT (1989) Transformation of Bacillus cereus vegetative cells by electroporation. Appl Environ Microbiol 55(6):1649–1652 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC202922/pdf/aem00099-0337.pdf, accessed on 28 March 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chuanchuen R, Narasaki CT, Schweizer HP (2002) Benchtop and microcentrifuge preparation of Pseudomonas aeruginosa competent cells. BioTechniques 33:760–763. https://doi.org/10.2144/02334bm08

    Article  CAS  PubMed  Google Scholar 

  8. Choi K-H, Kumar A, Schweizer HP (2006) A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397. https://doi.org/10.1016/j.mimet.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  9. Pyne ME, Moo-Young M, Chung DA, Chou CP (2013) Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum. Biotechnol Biofuels 6:50. https://doi.org/10.1186/1754-6834-6-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rattanachaikunsopon P, Phumkhachorn P (2009) Glass bead transformation method for gram-positive bacteria. Braz J Microbiol 40:923–926 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768579/pdf/bjm-40-923.pdf

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhao L, Xu R, Sun R, Deng Z, Yang W, Wei G (2011) Identification and characterization of the endophytic plant growth promoter Bacillus cereus strain MQ23 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 42(2):567–575 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769835/pdf/bjm-42-567.pdf

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li H, Guan Y, Dong Y, Zhao L, Rong S, Chen W, Lv M, Xu H, Gao X, Chen R, Li L, Xu Z (2018) Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae. PLoS One 13(10):e0203505. https://doi.org/10.1371/journal.pone.0203505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khaksar G, Treesubsuntornb C, Thiravetyana P (2016) Endophytic Bacillus cereus ERBP—Clitoria ternatea interactions: potentials for the enhancement of gaseous formaldehyde removal. Environ Exp Bot 126:10–20. https://doi.org/10.1016/j.envexpbot.2016.02.009

    Article  CAS  Google Scholar 

  14. Deng Y, Chen H, Li C, Xu J, Qi Q, Xu Y, Zhu Y, Zheng J, Peng D, Ruan L, Sun M (2019) Endophyte Bacillus subtilis evade plant defense by producing lantibiotic subtilomycin to mask self-produced flagellin. Commun Biol 2:368. https://doi.org/10.1038/s42003-019-0614-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd_Allah EF (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:1887. https://doi.org/10.3389/fmicb.2017.01887

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin L, Song H, Ji Y, He Z, Pu Y, Zhou J, Xu J (2010) Ultrasound-mediated DNA transformation in thermophilic gram-positive anaerobes. PLoS One 5(9):e12582. https://doi.org/10.1371/journal.pone.0012582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun K, Liu J, Gao Y, Jin L, Gu Y, Wang W (2014) Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci Rep 4:5462. https://doi.org/10.1038/srep05462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176. https://doi.org/10.1016/0378-1119(95)00584-1

    Article  CAS  PubMed  Google Scholar 

  19. Obranić S, Babić F, Maravić-Vlahoviček G (2013) Improvement of pBBR1MCS plasmids, a very useful series of broad-host-range cloning vectors. Plasmid 70:263–267. https://doi.org/10.1016/j.plasmid.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  20. Ouahrani-Bettache S, Porte F, Teyssier J, Liautard J-P, Köhler S (1999) pBBR1-GFP: a broad-host-range vector for prokaryotic promoter studies. BioTechniques 26(4):620–622. https://doi.org/10.2144/99264bm05

    Article  CAS  PubMed  Google Scholar 

  21. Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6(4):324–338 https://cmr.asm.org/content/cmr/6/4/324.full.pdf. Accessed 10 Apr 2017.

  22. Niu D-D, Liu H-X, Jiang C-H, Wang Y-P, Wang Q-Y, Jin H-L, Guo J-H (2011) The plant growth–promoting Rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24(5):533–542. https://doi.org/10.1094/MPMI-09-10-0213

    Article  CAS  PubMed  Google Scholar 

  23. Molecular Biological Methods for Bacillus (2016) Two-step Bacillus subtilis transformation protocol. https://wiki.biol.uw.edu.pl/t/img_auth.php/b/b5/Bacillus_subtilis_competent_cells.pdf, accessed on 2 March 2016

  24. Banu H, Prasad KP (2017) Role of plasmids in microbiology. J Aquac Res Development 8:466. https://doi.org/10.4172/2155-9546.1000466

    Article  CAS  Google Scholar 

  25. Werbowy O, Kaczorowski T (2016) Plasmid pEC156, a naturally occurring Escherichia coli genetic element that carries genes of the EcoVIII restriction-modification system, is mobilizable among enterobacteria. PLoS One 11(2):e0148355. https://doi.org/10.1371/journal.pone.0148355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Velappan N, Sblattero D, Chasteen L, Pavlik P, Bradbury ARM (2007) Plasmid incompatibility: more compatible than previously thought? Protein Eng Des Sel 20(7):309–313. https://doi.org/10.1093/protein/gzm005

    Article  CAS  PubMed  Google Scholar 

  27. Wegrzyn G, Wegrzyn A (2002) Stress responses and replication of plasmids in bacterial cells. Microb Cell Factories 1:2. https://doi.org/10.1186/1475-2859-1-2

    Article  Google Scholar 

  28. Doi O, Ogura M, Tanaka N, Umezawa H (1968) Inactivation of kanamycin, neomycin, and streptomycin by enzymes obtained in cells of Pseudomonas aeruginosa. Appl Microbiol 16(9):1276–1281 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC547640/pdf/applmicro00245-0014.pdf. Accessed 11 Apr 2017

  29. Poole K (2005) Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49(2):479–487. https://doi.org/10.1128/AAC.49.2.479-487.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. King ED, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and flourescin. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  31. Gill VJ, Stock F (1986) Medium for the simultaneous detection of pyocyanin and fluorescein pigments of Pseudomonas aeruginosa. Brief Sci Rep 88(1):110–112. https://doi.org/10.1093/ajcp/88.1.110

    Article  Google Scholar 

  32. Lamichhane JR, Varvaro L (2012) A new medium for the detection of fluorescent pigment production by pseudomonads. Plant Pathol 2012:1–9. https://doi.org/10.1111/j.1365-3059.2012.02670.x

    Article  CAS  Google Scholar 

  33. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasherf DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805. https://doi.org/10.1126/science.8303295

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Jin L, Yuan Z, Węgrzyn G, Węgrzyn A (2009) Classification of plasmid vectors using replication origin, selection marker and promoter as criteria. Plasmid 61:47–51. https://doi.org/10.1016/j.plasmid.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  35. Antoine R, Locht C (1992) Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. Mol Microbiol 6(13):1785–1799. https://doi.org/10.1111/j.1365-2958.1992.tb01351.x

    Article  CAS  PubMed  Google Scholar 

  36. Szpirer CY, Faelen M, Couturier M (2001) Mobilization function of the pBHR1 plasmid, a derivative of the broad-host-range plasmid pBBR1. J Bacteriol 183(6):2101-2110. https://doi.org/10.1128/JB.183.6.2101-2110.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Courvalin P (1994) Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 38(7):1447–1451. https://doi.org/10.1128/AAC.38.7.1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Norberg P, Bergström M, Jethava V, Dubhashi D, Hermansson M (2011) The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat Commun 2:268. https://doi.org/10.1038/ncomms1267

    Article  CAS  PubMed  Google Scholar 

  39. Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in Gram-positive bacteria. Microbiol Mol Biol Rev 67(2):277–301. https://doi.org/10.1128/MMBR.67.2.277-301.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Phornphisutthimas S, Thamchaipenet A, Panijpan B (2007) Conjugation in Escherichia coli. Biochem Mol Biol Educ 35(6):440–445. https://doi.org/10.1002/bmb.113

    Article  CAS  PubMed  Google Scholar 

  41. Lawley TD, Gordon GS, Wright A, Taylor DE (2002) Bacterial conjugative transfer: visualization of successful mating pairs and plasmid establishment in live Escherichia coli. Mol Microbiol 44(4):947–956. https://doi.org/10.1046/j.1365-2958.2002.02938.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director-General of Malaysian Palm Oil Board for permission to publish this paper. We also would like to thank Prof. Dr. Yanzheng Gao for providing the pBBRGFP-45 plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamala Sundram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Gisele Monteiro.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirajuddin, S.A., Sundram, S. Evaluation of two transformation protocols and screening of positive plasmid introduction into Bacillus cereus EB2, a gram-positive bacterium using qualitative analyses. Braz J Microbiol 51, 919–929 (2020). https://doi.org/10.1007/s42770-020-00241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00241-0

Keywords

Navigation