Skip to main content
Log in

Identification and characterization of mRNAs and lncRNAs of a barley shrunken endosperm mutant using RNA-seq

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Barley shrunken endosperm mutants have been extensively reported. However, knowledge of the underlying molecular mechanisms of these mutants remains limited. Here, a pair of near isogenic lines (normal endosperm: Bowman and shrunken endosperm: sex1) was subjected to transcriptome analysis to identify mRNAs and lncRNAs related to endosperm development to further dissect its mechanism of molecular regulation. A total of 2123 (1140 up- and 983 down-regulated) unique differentially expressed genes (DEGs) were detected. Functional analyses showed that these DEGs were mainly involved in starch and sucrose metabolism, biosynthesis of secondary metabolites, and plant hormone signal transduction. A total of 343 unique target genes were identified for 57 differentially expressed lncRNAs (DE lncRNAs). These DE lncRNAs were mainly involved in glycerophospholipid metabolism, starch and sucrose metabolism, hormone signal transduction, and stress response. In addition, key lncRNAs were identified by constructing a co-expression network of the target genes of DE lncRNAs. Transcriptome results suggested that mRNA and lncRNA played a critical role in endosperm development. The shrunken endosperm in barley seems to be closely related to plant hormone signal transduction, starch and sucrose metabolism, and cell apoptosis. This study provides a foundation for fine mapping, elucidates the molecular mechanism of shrunken endosperm mutants, and also provides a reference for further studies of lncRNAs during the grain development of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ana C, Stefan GT, Juan Miguel GG, Javier T, Manuel T, Montserrat R (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Google Scholar 

  • Archak S, Nagaraju J (2007) Computational prediction of rice (Oryza sativa) miRNA targets. Genomics Proteomics Bioinform 5:196–206

    CAS  Google Scholar 

  • Azanza F, Bar-Zur A, Juvik JA (1996) Variation in sweet corn kernel characteristics associated with stand establishment and eating quality. Euphytica 87:7–18

    Google Scholar 

  • Basunia MA, Nonhebel HM (2019) Hormonal regulation of cereal endosperm development with a focus on rice (Oryza sativa). Funct Plant Biol 46:493–506

    CAS  PubMed  Google Scholar 

  • Bosnes M, Harris E, Aigeltinger L, Olsen O (1987) Morphology and ultrastructure of 11 barley shrunken endosperm mutants. Theor Appl Genet 74:177–187

    CAS  PubMed  Google Scholar 

  • Bowen I (1992) Apoptosis: the molecular basis of cell death (current-cominunications in cell & molecular biology). FEBS Lett 3:91–93. https://doi.org/10.1016/0014-5793(92)81160-n

    Article  Google Scholar 

  • Boyer CD, Shannon JC (1983) The use of endosperm genes for sweet corn improvement. Plant Breed Rev 1:139–161

    CAS  Google Scholar 

  • Bu D et al (2012) NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 40:D210–D215

    CAS  PubMed  Google Scholar 

  • Chen M (2002) An integrated physical and genetic map of the rice genome. Plant Cell Online 3:537–545

    Google Scholar 

  • Cho K-O, Hsieh J (2015) The lncRNA Pnky in the brain. Cell Stem Cell 16:344–345

    CAS  PubMed  Google Scholar 

  • Chun-Yan et al (2010) Starch synthesis and programmed cell death during endosperm development in triticale (x Triticosecale Wittmack). J Integr Plant Biol 52:602–615

    Google Scholar 

  • Clarke B, Liang R, Morell MK, Bird AR, Jenkins CLD, Li Z (2008) Gene expression in a starch synthase IIa mutant of barley: changes in the level of gene transcription and grain composition. Funct Integr Genomics 8:211–221

    CAS  PubMed  Google Scholar 

  • Cook F, Hughes N, Nibau C, Orman-Ligeza B, Schatlowski N, Uauy C, Trafford K (2018) Barley lys3 mutants are unique amongst shrunken-endosperm mutants in having abnormally large embryos. J Cereal Sci 82:S073352101830167X

    Google Scholar 

  • Csorba T, Questa JI, Sun Q (2014) Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc Natl Acad Sci 111:16160–16165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai H et al (2013) Comparative proteomic analysis of aluminum tolerance in tibetan wild and cultivated barleys. PLoS ONE 8:e63428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Datta R, Paul S (2019) Long non-coding RNAs: fine-tuning the developmental responses in plants. J Biosci 44:77

    PubMed  Google Scholar 

  • De Arcangelis E, Djurle S, Andersson AA, Marconi E, Messia MC, Andersson R (2019) Structure analysis of β-glucan in barley and effects of wheat β-glucanase. J Cereal Sci 85:175–181

    Google Scholar 

  • Desa U (2015) World population prospects: the 2015 revision, key findings and advance tables. Working PaperNo

  • Díaz ML, Soresi DS, Basualdo J, Cuppari SJ, Carrera A (2019) Transcriptomic response of durum wheat to cold stress at reproductive stage. Mol Biol Rep 46:2427–2445

    PubMed  Google Scholar 

  • Ding Z et al (2019) Strand-specific RNA-seq based identification and functional prediction of drought-responsive lncRNAs in cassava. BMC Genom 20:214

    Google Scholar 

  • Djarot IN, Peterson DM (1991) Seed development in a shrunken endosperm barley mutant. Ann Bot 68:495–499

    Google Scholar 

  • Eslick R, Ries M (1976) Positioning sex1 on chromosome 6. Barley Genet Newsl 6:21–22

    Google Scholar 

  • Fan C et al (2017) Identification of QTLs controlling grain protein concentration using a high-density SNP and SSR linkage map in barley (Hordeum vulgare L.). BMC Plant Biol 17:122

    PubMed  PubMed Central  Google Scholar 

  • Felker F, Peterson D, Nelson O (1983) Growth characteristics, grain filling, and assimilate transport in a shrunken endosperm mutant of barley. Plant Physiol 72:679–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felker FC, Peterson DM, Nelson OE (1984a) Development of tannin vacuoles in chalaza and seed coat of barley in relation to early chalazal necrosis in the seg1 mutant. Planta 161:540–549

    CAS  PubMed  Google Scholar 

  • Felker FC, Peterson DM, Nelson OE (1984b) Sucrose uptake and labeling of starch in developing grains of normal and segl barley. Plant Physiol 74:43–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felker FC, Peterson DM, Nelson OE (1985) Anatomy of immature grains of eight maternal effect shrunken endosperm barley mutants. Am J Bot 72:248–256

    Google Scholar 

  • Finn RD et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:222–230

    Google Scholar 

  • Franckowiak JD, Lundqvist U, NG B (2010) Descriptions of barley genetic stocks for 2010. Barley Genet Newsl 40:45–177

    Google Scholar 

  • Guttman M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAS in mammals. Nature 458(7235):223–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M (2012) Next-generation sequencing technologies for gene expression profiling in plants. Brief Funct Genom 11:63–70

    CAS  Google Scholar 

  • Jarvi AJ (1975) Shrunken endosperm mutants in barley, Hordeum vulgare L. Cropence 15:363–366

    Google Scholar 

  • Jie L et al (2013) Identification and characterization of long non-coding RNAs related to mouse embryonic brain development from available transcriptomic data. PLoS ONE 8:e71152

    Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlik E, Ari S, Gozukirmizi N (2019) LncRNAs: genetic and epigenetic effects in plants. Biotechnol Biotechnol Equip.https://doi.org/10.1080/13102818.2019.1581085

    Article  Google Scholar 

  • Kelley D, Rinn J (2012) Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13(11):R107

    PubMed  PubMed Central  Google Scholar 

  • Khahani B, Tavakol E, Vahid SJ (2019) Genome-wide meta-analysis on yield and yield-related QTLs in barley (Hordeum vulgare L.). Mol Breed.https://doi.org/10.1007/s11032-019-0962-y

    Article  Google Scholar 

  • Kim ED, Sung S (2012) Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17:16–21

    CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Steven LS (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345

    PubMed  PubMed Central  Google Scholar 

  • Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11:59

    PubMed  PubMed Central  Google Scholar 

  • Lee SK et al (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol 65:531–546

    CAS  PubMed  Google Scholar 

  • Li N, Li Y (2015) Maternal control of seed size in plants. J Exp Bot 66:1087–1097

    CAS  PubMed  Google Scholar 

  • Li L et al (2014) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15:R40

    PubMed  PubMed Central  Google Scholar 

  • Li J, Ma W, Zeng P, Wang J, Geng B, Yang J, Cui Q (2015) LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform 16:806

    CAS  PubMed  Google Scholar 

  • Li X et al (2019) Development of an integrated 200K SNP genotyping array and application for genetic mapping, genome assembly improvement and genome wide association studies in pear (Pyrus). Plant Biotechnol J 17:1582–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J et al (2018) A 55K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor Appl Genet 131:2439–2450

    CAS  PubMed  Google Scholar 

  • Ma J et al (2014a) Characterization of shrunken endosperm mutants in barley. Gene 539:15–20

    CAS  PubMed  Google Scholar 

  • Ma J et al (2014b) Transcriptome and allele specificity associated with a 3BL locus for Fusarium crown rot resistance in bread wheat. PLoS ONE 9:e113309

    PubMed  PubMed Central  Google Scholar 

  • Mascher M et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    CAS  PubMed  Google Scholar 

  • Morell MK et al (2010) Barley sex6 mutants lack starch synthase lla activity and contain a starch with novel properties. Plant J 34:173–185

    Google Scholar 

  • Nese S et al (2010) De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg. Plant J Cell Mol Biol 64:589–603

    Google Scholar 

  • Numoto AY, Vidigal Filho PS, Scapim CA, Franco AAN, Ortiz AHT, Marques OJ, Pelloso MF (2019) Agronomic performance and sweet corn quality as a function of inoculant doses (Azospirillum brasilense) and nitrogen fertilization management in summer harvest. Bragantia 78:26–37

    Google Scholar 

  • Ou L et al (2017) Noncoding and coding transcriptome analysis reveals the regulation roles of long noncoding RNAs in fruit development of hot pepper (Capsicum annuum L.). Plant Growth Regul 83:1–16

    Google Scholar 

  • Patron N, Greber B, Fahy B, Laurie D, Parker M, Denyer K (2004) The lys5 mutations of barley reveal the nature and importance of plastidial ADP-Glc transporters for starch synthesis in cereal endosperm. Plant Physiol 135:2088–2097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pozueta-Romero J et al (2019) Mitochondrial Zea mays Brittle1-1 Is a major determinant of the metabolic fate of incoming sucrose and mitochondrial function in developing maize endosperms. Front Plant Sci 10:242

    PubMed  PubMed Central  Google Scholar 

  • Qi J et al (2019) The anther-specific CYP704B is potentially responsible for MSG26 male sterility in barley. Theor Appl Genet 132:2413–2423

    CAS  PubMed  Google Scholar 

  • Qiu C-W, Zhao J, Chen Q, Wu F (2019) Genome-wide characterization of drought stress responsive long non-coding RNAs in Tibetan wild barley. Environ Exp Bot 164:124–134

    CAS  Google Scholar 

  • Ramage RT, Scheuring JF (1976) Shrunken endosperm mutants Seg6 and Seg7 [Barley]. Barley Genet Newsl 6:59–60

    Google Scholar 

  • Rapacz M, Stępień A, Skorupa K (2012) Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): the effects of developmental stage and leaf age. Acta Physiol Plant 34:1723–1733

    CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    CAS  PubMed  Google Scholar 

  • Röder MS, Kaiser C, Weschke W (2006) Molecular mapping of the shrunken endosperm genes seg8 and sex1 in barley (Hordeum vulgare L.). Genome 49:1209–1214

    PubMed  Google Scholar 

  • Saintenac C, Falque M, Martin OC, Paux E, Feuillet C, Sourdille P (2009) Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181:393–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito R et al (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmalenbach I, Jens L, Klaus P (2008) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118:483–497

    PubMed  Google Scholar 

  • Schulman AH, Tomooka S, Suzuki A, Myllärinen P, Hizukuri S (1995) Structural analysis of starch from normal and shx (shrunken endosperm) barley (Hordeum vulgare L.). Carbohydr Res 275:361–369

    CAS  Google Scholar 

  • Scofield GN, Hirose T, Gaudron JA, Furbank RT, Ohsugi R (2002) Antisense suppression of the rice sucrose transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Funct Plant Biol 29:815–826

    CAS  PubMed  Google Scholar 

  • Shanrong Z, Wai-Ping FL, Anton B, Karen N, Xuejun L (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS ONE 9:e78644

    Google Scholar 

  • Solomon CU, Drea S (2019) Delineation of post-phloem assimilate transport pathway into developing caryopsis of Brachypodium distachyon. BioRxiv:718569

  • Sreenivasulu N, Borisjuk L, Junker BH, Mock HP, Wobus U (2010) Barley grain development: toward an integrative view. Int Rev Cell Mol Biol 281:49–89

    CAS  PubMed  Google Scholar 

  • Sun L et al (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41:e166–e166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe S et al (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov LR (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J et al (2016) Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus. J Exp Bot 67:2467–2482

    CAS  PubMed  Google Scholar 

  • Tian T et al (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ullrich SE, Eslick RF (1978) Lysine and protein characterization of spontaneous shrunken endosperm mutants of barley. Crop Sci 18:97–99

    Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    PubMed  Google Scholar 

  • Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W (2013) CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74–e74. https://doi.org/10.1093/nar/gkt006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, Xu J, Chua NH (2014) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24:444–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2018) Analysis of long-non-coding RNAs associated with ethylene in tomato. Gene 674:151–160

    CAS  PubMed  Google Scholar 

  • Xin M et al (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M et al (2018) Analysis of contributors to grain yield in wheat at the individual quantitative trait locus level. Plant Breed.https://doi.org/10.1111/pbr.12555

    Article  Google Scholar 

  • Yuan J et al (2017) Stress-responsive regulation of long noncoding RNAs’ polyadenylation in Oryza sativa. Plant J 93:814–827

    Google Scholar 

  • Zeng J et al (2014) Comparative transcriptome profiling of two tibetan wild barley genotypes in responses to low potassium. PLoS ONE 9:e100567

    PubMed  PubMed Central  Google Scholar 

  • Zhang YC, Chen YQ (2013) Long noncoding RNAs: new regulators in plant development. Biochem Biophys Res Commun 436:111–114

    CAS  PubMed  Google Scholar 

  • Zhang YC et al (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15:512

    PubMed  PubMed Central  Google Scholar 

  • Zhu W (2012) Molecular functions of long non-coding RNAs in plants. Genes 3:176–190

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (31970243 and 31971937), the International Science and Technology Cooperation and Exchanges Program of Science and Technology Department of Sichuan Province (2017HH0076), and the Key Projects of Scientific and Technological Activities for Overseas Students of Sichuan Province. We thank MogoEdit Bianji Company (http://www.mogoedit.com/) for editing the English text of this manuscript. We thank the anonymous referees for critical reading and revising of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiujin Lan or Jian Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Functional categories of DEGs. The (a) GO and (b) KEGG enrichment analysis of DEGs between Bowman and sex1 at 15 DAF. Electronic supplementary material 1 (TIF 8026 kb)

Fig. S2

Functional categories of DEGs. The (a) GO and (b) KEGG enrichment analysis of DEGs between Bowman and sex1 at 20 DAF. Electronic supplementary material 2 (TIF 8238 kb)

Fig. S3

Characterization of all lncRNAs and mRNAs. (a) Venn diagrams of coding potential prediction of lncRNAs by CPC, CPAT, CNCI and pfam. (b) Classification of lncRNAs. X axis indicates different types of lncRNA, Y axis indicates the corresponding number of lncRNA. Distributions of lncRNAs and mRNAs in transcript length (c, d), and exon number (e, f), respectively. Electronic supplementary material 3 (TIF 12861 kb)

Fig. S4

Functional categories of the target genes of DE lncRNAs between Bowman and sex1 at 15 DAF. The (a) COG classify, (b) GO and (c) KEGG enrichment analysis. Electronic supplementary material 4 (TIF 11789 kb)

Fig. S5

Functional categories of the target genes of DE lncRNAs between Bowman and sex1 at 20 DAF. The (a) COG classify, (b) GO and (c) KEGG enrichment analysis. Electronic supplementary material 5 (TIF 12021 kb)

Fig. S6

The network map of DE lncRNAs and their target genes. Electronic supplementary material 6 (TIF 12304 kb)

Fig. S7

Functional analysis of MSTRG.79382.1. The (a) COG analysis, (b) GO annotation and (c) KEGG enrichment analysis of MSTRG.79382.1. Electronic supplementary material 7 (TIF 11757 kb)

Table S1

Primers used for qRT-PCR for selected DEGs and DE lncRNAs. Electronic supplementary material 8 (XLSX 9 kb)

Table S2

Summary of Illumina RNA-seq reads for 24 samples (dataset A and dataset B). Electronic supplementary material 9 (XLSX 12 kb)

Table S3

DEGs in dataset A and dataset B. Electronic supplementary material 10 (XLSX 65 kb)

Table S4

GO analysis of DEGs at 10, 15 and 20 DAF. Electronic supplementary material 11 (XLSX 22 kb)

Table S5

KEGG enrichment annotation of DEGs at 10, 15 and 20 DAF. Electronic supplementary material 12 (XLSX 22 kb)

Table S6

Details of classification of lncRNA. Electronic supplementary material 13 (XLSX 58 kb)

Table S7

Summary of 10 known lncRNAs. Electronic supplementary material 14 (XLSX 9 kb)

Table S8

Summary of DE lncRNAs and their target genes. Electronic supplementary material 15 (XLSX 17 kb)

Table S9

COG classification of target genes DE lncRNAs at 10, 15 and 20 DAF. Electronic supplementary material 16 (XLSX 14 kb)

Table S10

GO analysis of target genes of DE lncRNAs at 10, 15 and 20 DAF. Electronic supplementary material 17 (XLSX 15 kb)

Table S11

KEGG enrichment annotation of target genes of DE lncRNAs at 10, 15 and 20 DAF. Electronic supplementary material 18 (XLSX 14 kb)

Table S12

DE lncRNA and target gene co-expression network analysis. Electronic supplementary material 19 (XLSX 21 kb)

Table S13

Functional analysis of MSTRG.79382.1. Electronic supplementary material 20 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Tang, H., Li, T. et al. Identification and characterization of mRNAs and lncRNAs of a barley shrunken endosperm mutant using RNA-seq. Genetica 148, 55–68 (2020). https://doi.org/10.1007/s10709-020-00087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-020-00087-2

Keywords

Navigation