Skip to main content
Log in

Leptospira interrogans Bat proteins impair host hemostasis by fibrinogen cleavage and platelet aggregation inhibition

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Leptospirosis is a worldwide spread zoonosis, caused by pathogenic Leptospira. Evidences suggest that compromised hemostasis might be involved in the leptospirosis pathophysiology. In the genome of L. interrogans serovar Copenhageni, we found two genes coding for proteins which comprise von Willebrand factor (VWF) A domains (BatA and BatB). As VWF A domains exhibit multiple binding sites which contributes to human VWF hemostatic functions, we hypothesized that the L. interrogans BatA and BatB proteins could be involved in the hemostatic impairment during leptospirosis. We have cloned, expressed in Escherichia coli, and purified recombinant BatA and BatB. The influence of recombinant BatA and BatB on different in vitro hemostatic assays evaluating the enzymatic activity, platelet aggregation and fibrinogen integrity was investigated. We describe BatB as a new serine protease which is able to cleave thrombin chromogenic substrate, fibrin, fibrinogen, gelatin and casein; while BatA is active only towards fibrinogen. BatA and BatB interfere with the platelet aggregation induced by VWF/ristocetin and thrombin. Our results suggest an important role of the L. interrogans serovar Copenhageni Bat proteins in the hemostasis dysfunction observed during leptospirosis and contribute to the understanding of the leptospirosis pathophysiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, Stein C, Abela-Ridder B, Ko AI (2015) Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 9(9):e0003898. https://doi.org/10.1371/journal.pntd.0003898

    Article  PubMed  PubMed Central  Google Scholar 

  2. Faine (1999) Leptospira and leptospirosis, vol 259. MediSci, Melbourne

  3. Plank R, Dean D (2000) Overview of the epidemiology, microbiology, and pathogenesis of Leptospira spp. in humans. Microbes Infect 2(10):1265–1276

    Article  CAS  Google Scholar 

  4. Levett PN (2001) Leptospirosis. Clin Microbiol Rev 14(2):296–326. https://doi.org/10.1128/CMR.14.2.296-326.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Picardeau M (2017) Virulence of the zoonotic agent of leptospirosis: still terra incognita? Nat Rev Microbiol 15(5):297–307. https://doi.org/10.1038/nrmicro.2017.5

    Article  CAS  PubMed  Google Scholar 

  6. Edwards CN, Nicholson GD, Hassell TA, Everard CO, Callender J (1986) Thrombocytopenia in leptospirosis: the absence of evidence for disseminated intravascular coagulation. Am J Trop Med Hyg 35(2):352–354

    Article  CAS  Google Scholar 

  7. De Francesco DE, Oliveira Neto FH, Ramirez SM (2002) Evaluation of hemostasis disorders and anticardiolipin antibody in patients with severe leptospirosis. Rev Inst Med Trop Sao Paulo 44(2):85–90

    Article  Google Scholar 

  8. Chierakul W, Tientadakul P, Suputtamongkol Y, Wuthiekanun V, Phimda K, Limpaiboon R, Opartkiattikul N, White NJ, Peacock SJ, Day NP (2008) Activation of the coagulation cascade in patients with leptospirosis. Clin Infect Dis 46(2):254–260. https://doi.org/10.1086/524664

    Article  CAS  PubMed  Google Scholar 

  9. Wagenaar JF, Goris MG, Partiningrum DL, Isbandrio B, Hartskeerl RA, Brandjes DP, Meijers JC, Gasem MH, van Gorp EC (2010) Coagulation disorders in patients with severe leptospirosis are associated with severe bleeding and mortality. Trop Med Int Health 15(2):152–159. https://doi.org/10.1111/j.1365-3156.2009.02434.x

    Article  CAS  PubMed  Google Scholar 

  10. Wagenaar JF, Goris MG, Sakundarno MS, Gasem MH, Mairuhu AT, de Kruif MD, Ten Cate H, Hartskeerl R, Brandjes DP, van Gorp EC (2007) What role do coagulation disorders play in the pathogenesis of leptospirosis? Trop Med Int Health 12(1):111–122. https://doi.org/10.1111/j.1365-3156.2006.01792.x

    Article  CAS  PubMed  Google Scholar 

  11. Vieira ML, de Andrade SA, Morais ZM, Vasconcellos SA, Dagli ML, Nascimento AL (2017) Leptospira infection interferes with the prothrombinase complex assembly during experimental leptospirosis. Front Microbiol 8:500. https://doi.org/10.3389/fmicb.2017.00500

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vieira ML, Nascimento AL (2016) Interaction of spirochetes with the host fibrinolytic system and potential roles in pathogenesis. Crit Rev Microbiol 42(4):573–587. https://doi.org/10.3109/1040841X.2014.972336

    Article  CAS  PubMed  Google Scholar 

  13. Vieira ML, Naudin C, Morgelin M, Romero EC, Nascimento AL, Herwald H (2016) Modulation of hemostatic and inflammatory responses by Leptospira Spp. PLoS Negl Trop Dis 10(5):e0004713. https://doi.org/10.1371/journal.pntd.0004713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oliveira R, Domingos RF, Siqueira GH, Fernandes LG, Souza NM, Vieira ML, de Morais ZM, Vasconcellos SA, Nascimento AL (2013) Adhesins of Leptospira interrogans mediate the interaction to fibrinogen and inhibit fibrin clot formation in vitro. PLoS Negl Trop Dis 7(8):e2396. https://doi.org/10.1371/journal.pntd.0002396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vieira ML, Vasconcellos SA, Goncales AP, de Morais ZM, Nascimento AL (2009) Plasminogen acquisition and activation at the surface of leptospira species lead to fibronectin degradation. Infect Immun 77(9):4092–4101. https://doi.org/10.1128/IAI.00353-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vieira ML, Alvarez-Flores MP, Kirchgatter K, Romero EC, Alves IJ, de Morais ZM, Vasconcellos SA, Chudzinski-Tavassi AM, Nascimento AL (2013) Interaction of Leptospira interrogans with human proteolytic systems enhances dissemination through endothelial cells and protease levels. Infect Immun 81(5):1764–1774. https://doi.org/10.1128/IAI.00020-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Springer TA (2014) von Willebrand factor, Jedi knight of the bloodstream. Blood 124(9):1412–1425. https://doi.org/10.1182/blood-2014-05-378638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nascimento AL, Ko AI, Martins EA, Monteiro-Vitorello CB, Ho PL, Haake DA, Verjovski-Almeida S, Hartskeerl RA, Marques MV, Oliveira MC, Menck CF, Leite LC, Carrer H, Coutinho LL, Degrave WM, Dellagostin OA, El-Dorry H, Ferro ES, Ferro MI, Furlan LR, Gamberini M, Giglioti EA, Goes-Neto A, Goldman GH, Goldman MH, Harakava R, Jeronimo SM, Junqueira-de-Azevedo IL, Kimura ET, Kuramae EE, Lemos EG, Lemos MV, Marino CL, Nunes LR, de Oliveira RC, Pereira GG, Reis MS, Schriefer A, Siqueira WJ, Sommer P, Tsai SM, Simpson AJ, Ferro JA, Camargo LE, Kitajima JP, Setubal JC, Van Sluys MA (2004) Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186(7):2164–2172

    Article  CAS  Google Scholar 

  19. Tang YP, Dallas MM, Malamy MH (1999) Characterization of the Batl (Bacteroides aerotolerance) operon in Bacteroides fragilis: isolation of a B. fragilis mutant with reduced aerotolerance and impaired growth in in vivo model systems. Mol Microbiol 32(1):139–149

    Article  CAS  Google Scholar 

  20. Wood E, Tamborero S, Mingarro I, Esteve-Gassent MD (2013) BB0172, a Borrelia burgdorferi outer membrane protein that binds integrin alpha3beta1. J Bacteriol 195(15):3320–3330. https://doi.org/10.1128/JB.00187-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brock CM, Bano-Polo M, Garcia-Murria MJ, Mingarro I, Esteve-Gasent M (2017) Characterization of the inner membrane protein BB0173 from Borrelia burgdorferi. BMC Microbiol 17(1):219. https://doi.org/10.1186/s12866-017-1127-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vanderlinde EM, Magnus SA, Tambalo DD, Koval SF, Yost CK (2011) Mutation of a broadly conserved operon (RL3499-RL3502) from Rhizobium leguminosarum biovar viciae causes defects in cell morphology and envelope integrity. J Bacteriol 193(11):2684–2694. https://doi.org/10.1128/JB.01456-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Subramanian G, Koonin EV, Aravind L (2000) Comparative genome analysis of the pathogenic spirochetes Borrelia burgdorferi and Treponema pallidum. Infect Immun 68(3):1633–1648

    Article  CAS  Google Scholar 

  24. Medvecky M, Cejkova D, Polansky O, Karasova D, Kubasova T, Cizek A, Rychlik I (2018) Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics 19(1):561. https://doi.org/10.1186/s12864-018-4959-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–260. https://doi.org/10.1093/nar/gku949(database issue)

    Article  CAS  PubMed  Google Scholar 

  26. Ramos CR, Abreu PA, Nascimento AL, Ho PL (2004) A high-copy T7 Escherichia coli expression vector for the production of recombinant proteins with a minimal N-terminal His-tagged fusion peptide. Braz J Med Biol Res 37(8):1103–1109. https://doi.org/10.1590/s0100-879X2004000800001

    Article  CAS  PubMed  Google Scholar 

  27. Vieira ML, Teixeira AF, Pidde G, Ching ATC, Tambourgi DV, Nascimento A, Herwald H (2018) Leptospira interrogans outer membrane protein LipL21 is a potent inhibitor of neutrophil myeloperoxidase. Virulence 9(1):414–425. https://doi.org/10.1080/21505594.2017.1407484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wiedemann C, Bellstedt P, Gorlach M (2013) CAPITO–a web server-based analysis and plotting tool for circular dichroism data. Bioinformatics 29(14):1750–1757. https://doi.org/10.1093/bioinformatics/btt278

    Article  CAS  PubMed  Google Scholar 

  29. Barenholz Y, Gibbes D, Litman BJ, Goll J, Thompson TE, Carlson RD (1977) A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry 16(12):2806–2810

    Article  CAS  Google Scholar 

  30. Vieira ML, de Andrade SA, Morais ZM, Vasconcellos SA, Dagli MLZ, Nascimento ALTO (2017) Leptospira infection interferes with the prothrombinase complex assembly during experimental leptospirosis. Frontiers in Microbiology 8:500–510

    PubMed  PubMed Central  Google Scholar 

  31. Rosing J, Tans G, Govers-Riemslag JW, Zwaal RF, Hemker HC (1980) The role of phospholipids and factor Va in the prothrombinase complex. J Biol Chem 255(1):274–283

    CAS  PubMed  Google Scholar 

  32. Betz A, Vlasuk GP, Bergum PW, Krishnaswamy S (1997) Selective inhibition of the prothrombinase complex: factor Va alters macromolecular recognition of a tick anticoagulant peptide mutant by factor Xa. Biochemistry 36(1):181–191. https://doi.org/10.1021/bi962060g

    Article  CAS  PubMed  Google Scholar 

  33. Dam P, Olman V, Harris K, Su Z, Xu Y (2007) Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res 35(1):288–298. https://doi.org/10.1093/nar/gkl1018

    Article  CAS  PubMed  Google Scholar 

  34. Mao F, Dam P, Chou J, Olman V, Xu Y (2009) DOOR: a database for prokaryotic operons. Nucleic Acids Res 37:459–463. https://doi.org/10.1093/nar/gkn757(database issue)

    Article  CAS  Google Scholar 

  35. Snider J, Houry WA (2006) MoxR AAA+ ATPases: a novel family of molecular chaperones? J Struct Biol 156(1):200–209. https://doi.org/10.1016/j.jsb.2006.02.009

    Article  CAS  PubMed  Google Scholar 

  36. Stewart PE, Carroll JA, Dorward DW, Stone HH, Sarkar A, Picardeau M, Rosa PA (2012) Characterization of the Bat proteins in the oxidative stress response of Leptospira biflexa. BMC Microbiol 12:290. https://doi.org/10.1186/1471-2180-12-290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ren SX, Fu G, Jiang XG, Zeng R, Miao YG, Xu H, Zhang YX, Xiong H, Lu G, Lu LF, Jiang HQ, Jia J, Tu YF, Jiang JX, Gu WY, Zhang YQ, Cai Z, Sheng HH, Yin HF, Zhang Y, Zhu GF, Wan M, Huang HL, Qian Z, Wang SY, Ma W, Yao ZJ, Shen Y, Qiang BQ, Xia QC, Guo XK, Danchin A, Saint Girons I, Somerville RL, Wen YM, Shi MH, Chen Z, Xu JG, Zhao GP (2003) Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422(6934):888–893. https://doi.org/10.1038/nature01597

    Article  CAS  PubMed  Google Scholar 

  38. De Candia E (2012) Mechanisms of platelet activation by thrombin: a short history. Thromb Res 129(3):250–256. https://doi.org/10.1016/j.thromres.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  39. Lisman T, Weeterings C, de Groot PG (2005) Platelet aggregation: involvement of thrombin and fibrin(ogen). Front Biosci 10:2504–2517

    Article  CAS  Google Scholar 

  40. Fang JQ, Imran M, Hu WL, Ojcius DM, Li Y, Ge YM, Li KX, Lin X, Yan J (2018) vWA proteins of Leptospira interrogans induce hemorrhage in leptospirosis by competitive inhibition of vWF/GPIb-mediated platelet aggregation. EBioMedicine 37:428–441. https://doi.org/10.1016/j.ebiom.2018.10.033

    Article  PubMed  PubMed Central  Google Scholar 

  41. Segel IH (1987) Citation-classic-enzyme-kinetics-behavior and analysis of rapid equilibrium and steady-state enzyme-systems. Cc/Life Sci 16:14–14

    Google Scholar 

  42. Matsui T, Fujimura Y, Titani K (2000) Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta 1477(1–2):146–156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gisele de Souza for excellent technical assistance.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil [2017/00236-5; 2014/50981-0; 2018/07054-2 to M.L.V.; 2017/01102-2 to F.J.P.] and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to M.B.H. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MV and FP. Performed the experiments: MV and FP. Analyzed the data: MV and FP. Contributed with reagents/materials/analysis tools: MV, MH, SA and AN. Wrote the paper: MV. Revised the paper: all authors.

Corresponding author

Correspondence to Mônica Larucci Vieira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Edited by Volkhard A. J. Kempf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4392 kb)

Supplementary file2 (DOCX 1664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passalia, F.J., Heinemann, M.B., de Andrade, S.A. et al. Leptospira interrogans Bat proteins impair host hemostasis by fibrinogen cleavage and platelet aggregation inhibition. Med Microbiol Immunol 209, 201–213 (2020). https://doi.org/10.1007/s00430-020-00664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-020-00664-4

Keywords

Navigation