Skip to main content

Advertisement

Log in

Identification and evaluation of hub mRNAs and long non-coding RNAs in neutrophils during sepsis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To reveal the systematic response of neutrophils to sepsis and to study the hub lncRNAs in sepsis.

Materials and methods

Neutrophils taken from the femur and tibia of male C57 BL/6 mice were used in this study. And neutrophils were treated for 0 h, 0.5 h, 1 h, and 4 h with or without 1 µg/mL lipopolysaccharide (LPS) for further chip detection. In addition, cecal ligation and perforation were used to simulate sepsis. Here, we used different bioinformatics analyses, including differential expression analysis, weighted gene co-expression network analysis (WGCNA), and gene regulatory network analysis, to analyze the systemic response of neutrophils to sepsis.

Results

We identified nine modules and found hub lncRNAs in each module. The blue and pink modules were closely related to the inflammatory state of sepsis. Some hub lncRNAs (NONMMUT005259, KnowTID_00004196, and NR_003507) may have functions related to the inflammatory state in sepsis.

Conclusions

Based on a new biological approach, our research results revealed the systemic-level response of neutrophils to sepsis and identified several hub lncRNAs with potential regulatory effects on this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 2018;14(7):417–27.

    Article  Google Scholar 

  2. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  Google Scholar 

  3. Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14(2):121–37.

    Article  CAS  Google Scholar 

  4. Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5(1):36–44.

    Article  Google Scholar 

  5. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–74.

    Article  CAS  Google Scholar 

  6. Leliefeld PH, Wessels CM, Leenen LP, Koenderman L, Pillay J. The role of neutrophils in immune dysfunction during severe inflammation. Crit Care. 2016;20:73.

    Article  Google Scholar 

  7. Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017;37(1):3–9.

    Article  Google Scholar 

  8. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–325.

    Article  CAS  Google Scholar 

  9. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62.

    Article  CAS  Google Scholar 

  10. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193(3):651–69.

    Article  CAS  Google Scholar 

  11. Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate transcription. Sci Adv. 2017;3(9):eaao2110.

    Article  CAS  Google Scholar 

  12. Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genom Proteom Bioinform. 2017;15(3):177–86.

    Article  Google Scholar 

  13. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.

    Article  CAS  Google Scholar 

  14. Liu N, Pan T. RNA epigenetics. Transl Res. 2015;165(1):28–35.

    Article  CAS  Google Scholar 

  15. Mo XB, Wu LF, Zhu XW, Xia W, Wang L, He P, et al. Identification and evaluation of lncRNA and mRNA integrative modules in human peripheral blood mononuclear cells. Epigenomics. 2017;9(7):943–54.

    Article  CAS  Google Scholar 

  16. Liu W, Li L, Ye H, Tu W. Weighted gene co-expression network analysis in biomedicine research. Sheng Wu Gong Cheng Xue Bao. 2017;33(11):1791–801.

    PubMed  Google Scholar 

  17. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504.

    Article  CAS  Google Scholar 

  18. Ahn R, Gupta R, Lai K, Chopra N, Arron ST, Liao W. Network analysis of psoriasis reveals biological pathways and roles for coding and long non-coding RNAs. BMC Genom. 2016;17(1):841.

    Article  CAS  Google Scholar 

  19. Miao X, Luo Q, Zhao H, Qin X. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries. Sci Rep. 2016;6:39398.

    Article  CAS  Google Scholar 

  20. Zhao G, Fu Y, Su Z, Wu R. How long non-coding RNAs and MicroRNAs mediate the endogenous RNA network of head and neck squamous cell carcinoma: a comprehensive analysis. Cell Physiol Biochem. 2018;50(1):332–41.

    Article  CAS  Google Scholar 

  21. Giulietti M, Occhipinti G, Principato G, Piva F. Weighted gene co-expression network analysis reveals key genes involved in pancreatic ductal adenocarcinoma development. Cell Oncol (Dordr). 2016;39(4):379–88.

    Article  CAS  Google Scholar 

  22. Zhou XG, Huang XL, Liang SY, Tang SM, Wu SK, Huang TT, et al. Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis. Onco Targets Ther. 2018;11:2815–30.

    Article  Google Scholar 

  23. Pei G, Chen L, Zhang W. WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol. 2017;585:135–58.

    Article  CAS  Google Scholar 

  24. Godini R, Fallahi H, Ebrahimie E. Network analysis of inflammatory responses to sepsis by neutrophils and peripheral blood mononuclear cells. PLoS ONE. 2018;13(8):e0201674.

    Article  CAS  Google Scholar 

  25. Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS ONE. 2017;12(9):e0184129.

    Article  CAS  Google Scholar 

  26. Zhang C, Peng L, Zhang Y, Liu Z, Li W, Chen S, et al. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Med Oncol. 2017;34(6):101.

    Article  CAS  Google Scholar 

  27. Liu X, Hu AX, Zhao JL, Chen FL. Identification of key gene modules in human osteosarcoma by co-expression analysis weighted gene co-expression network analysis (WGCNA). J Cell Biochem. 2017;118(11):3953–9.

    Article  CAS  Google Scholar 

  28. Fatima A, Connaughton RM, Weiser A, Murphy AM, O’Grada C, Ryan M, et al. Weighted gene co-expression network analy-sis identifiesgender specific modules and hub genes related to metabolism and inflammation in response to an acute lipid chal-lenge. Mol Nutr Food Res. 2018;62(2):1–23.

    Article  CAS  Google Scholar 

  29. Rogobete AF, Sandesc D, Papurica M, Stoicescu ER, Popovici SE, Bratu LM, et al. The influence of metabolic imbalances and oxidative stress on the outcome of critically ill polytrauma patients: a review. Burn Trauma. 2017;5:8.

    Article  Google Scholar 

  30. Wang X, Qin W, Sun B. New strategy for sepsis: targeting a key role of platelet-neutrophil interaction. Burn Trauma. 2014;2(3):114–20.

    Article  Google Scholar 

  31. Castelo-Branco G, Bonetti A. Birth, coming of age and death: the intriguing life of long noncoding RNAs. Semin Cell Dev Biol. 2018;79:143–52.

    Article  CAS  Google Scholar 

  32. Othumpangat S, Bryan NB, Beezhold DH, Noti JD. Upregulation of miRNA-4776 in influenza virus infected bronchial epithelial cells is associated with downregulation of NFKBIB and increased viral survival. Viruses. 2017;9(5):1–18.

    Article  CAS  Google Scholar 

  33. Sun SC. The noncanonical NF-κB pathway. Immunol Rev. 2012;246(1):125–40.

    Article  CAS  Google Scholar 

  34. Häcker H, Karin M. Is NF-kappaB2/p100 a direct activator of programmed cell death. Cancer Cell. 2002;2(6):431–3.

    Article  Google Scholar 

  35. Majoros A, Platanitis E, Kernbauer-Hölzl E, Rosebrock F, Müller M, Decker T. Canonical and non-canonical aspects of JAK-STAT signaling: lessons from interferons for cytokine responses. Front Immunol. 2017;8:29.

    Article  CAS  Google Scholar 

  36. Paul A, Tang TH, Ng SK. Interferon regulatory factor 9 structure and regulation. Front Immunol. 2018;9:1831.

    Article  CAS  Google Scholar 

  37. Blaszczyk K, Nowicka H, Kostyrko K, Antonczyk A, Wesoly J, Bluyssen HA. The unique role of STAT2 in constitutive and IFN-induced transcription and antiviral responses. Cytokine Growth Factor Rev. 2016;29:71–81.

    Article  CAS  Google Scholar 

  38. Ning S, Pagano JS, Barber GN. IRF7: activation, regulation, modification and function. Genes Immun. 2011;12(6):399–414.

    Article  CAS  Google Scholar 

  39. Zhang L, Pagano JS. Structure and function of IRF-7. J Interferon Cytokine Res. 2002;22(1):95–101.

    Article  Google Scholar 

  40. Ersing I, Bernhardt K, Gewurz BE. NF-κB and IRF7 pathway activation by Epstein-Barr virus latent membrane protein 1. Viruses. 2013;5(6):1587–606.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China, Nos. 81471903, and 81772135; by the Jiangsu Natural Science Foundation, No. BE2017695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingwei Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11_2020_1323_MOESM1_ESM.tif

Supplementary file1 (TIF 983 kb) Weighted co-expression gene network analysis. (a) Sample cluster analysis. (b) Number of mRNAs and lncRNAs in each module. (c) Eigengene adjacency heatmap. Colors represent correlation between two modules: blue, low correlation; red, high correlation

11_2020_1323_MOESM2_ESM.tif

Supplementary file2 (TIF 1179 kb) GO enrichment of DEGs in the turquoise (a), green (b), and brown (c) modules. KEGG annotation of gene clusters in the turquoise (d), green (e), and brown (f) modules. Colors represent term enrichment: purple, low enrichment; red, high enrichment

11_2020_1323_MOESM3_ESM.tif

Supplementary file3 (TIF 2609 kb) Module lncRNA-mRNA-Net of hub genes in the turquoise (a), green (b), and brown (c) modules. Module lncRNA-mRNA-Pathway-Net of hub genes in the turquoise (d), green (e), and brown (f) modules. Green circles represent mRNAs, red triangles represent lncRNAs, and gray polygons represent pathways. The size of these graphs represents the level of intramodular connectivity of hub genes in the network

Supplementary file4 (DOCX 12 kb) Primer sequences of selected hub mRNAs and lncRNAs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Sun, R. & Sun, B. Identification and evaluation of hub mRNAs and long non-coding RNAs in neutrophils during sepsis. Inflamm. Res. 69, 321–330 (2020). https://doi.org/10.1007/s00011-020-01323-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01323-3

Keywords

Navigation