Skip to main content

Advertisement

Log in

CD226 attenuates Treg suppressive capacity via CTLA-4 and TIGIT during EAE

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The Cluster of differentiation 226(CD226)/T cell immunoglobulin and immune receptor tyrosine-based inhibitory motif domain (TIGIT) axis plays an important role in the balance of the immune response. A previous study showed that CD226 is involved in CD4+ T cell differentiation and that blocking CD226 may attenuate experimental autoimmune encephalomyelitis (EAE) development. However, the molecular mechanisms underlying this process remain incompletely understood. In this study, it was found that Cd226−/− mice were less susceptible to EAE and that there was less T helper 17(Th17) cell infiltration with higher levels of regulatory cells (Tregs) infiltration in the Cd226−/− EAE mouse central nervous system (CNS) compared with that in the WT EAE mouse CNS. Moreover, the suppressive function of Cd226−/− Tregs was upregulated compared with that of WT Tregs. Furthermore, it was observed that the expression levels of CTLA-4 and TIGIT on Cd226−/− Tregs were higher than those on WT Tregs during EAE in the spleen and CNS. Our results demonstrate a pivotal role for CD226 in attenuating Treg function in EAE that was associated with downregulating the expression levels of CTLA-4 and TIGIT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu Z, Jin B. A novel interface consisting of homologous immunoglobulin superfamily members with multiple functions. Cell Mol Immunol. 2010;7:11–9.

    PubMed  PubMed Central  Google Scholar 

  2. Lozano E, Joller N, Cao Y, Kuchroo VK, Hafler DA. The CD226/CD155 interaction regulates the proinflammatory (Th1/Th17)/anti-inflammatory (Th2) balance in humans. Journal of immunology (Baltimore, MD: 1950). 2013;191:3673–80.

    CAS  Google Scholar 

  3. Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA. The TIGIT/CD226 axis regulates human T cell function. J Immunol (Baltimore, MD: 1950). 2012;188:3869–75.

    CAS  Google Scholar 

  4. Shibuya K, Shirakawa J, Kameyama T, Honda S, Tahara-Hanaoka S, Miyamoto A, et al. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med. 2003;198:1829–39.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Mastorodemos V, Ioannou M, Verginis P. Cell-based modulation of autoimmune responses in multiple sclerosis and experimental autoimmmune encephalomyelitis: therapeutic implications. Neuroimmunomodulation. 2015;22:181–95.

    PubMed  CAS  Google Scholar 

  6. Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol (Baltimore, MD: 1950). 2011;186:1338–42.

    CAS  Google Scholar 

  7. Luchtman DW, Ellwardt E, Larochelle C, Zipp F. IL-17 and related cytokines involved in the pathology and immunotherapy of multiple sclerosis: current and future developments. Cytokine Growth Factor Rev. 2014;25:403–13.

    PubMed  CAS  Google Scholar 

  8. Danikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation. 2017;14:117.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhang R, Zeng H, Zhang Y, Chen K, Zhang C, Song C, et al. CD226 ligation protects against EAE by promoting IL-10 expression via regulation of CD4+ T cell differentiation. Oncotarget. 2016;7:19251–64.

    PubMed  PubMed Central  Google Scholar 

  10. Fuhrman CA, Yeh WI, Seay HR, Saikumar Lakshmi P, Chopra G, Zhang L, et al. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J Immunol (Baltimore, MD: 1950). 2015;195:145–55.

    CAS  Google Scholar 

  11. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science (New York, NY). 2008;322:271–5.

    CAS  Google Scholar 

  12. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 2014;40:569–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186–97.

    PubMed  PubMed Central  Google Scholar 

  14. King IL, Dickendesher TL, Segal BM. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood. 2009;113:3190–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Geng J, Yu S, Zhao H, Sun X, Li X, Wang P, et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat Immunol. 2017;18:800–12.

    PubMed  CAS  Google Scholar 

  16. Pino PA, Cardona AE. Isolation of brain and spinal cord mononuclear cells using percoll gradients. J Visualized Exp : JoVE 2011.

  17. Klocke K, Sakaguchi S, Holmdahl R, Wing K. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci U S A. 2016;113:E2383–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Kim BS, Lu H, Ichiyama K, Chen X, Zhang YB, Mistry NA, et al. Generation of RORgammat(+) antigen-specific T regulatory 17 cells from Foxp3(+) precursors in autoimmunity. Cell Rep. 2017;21:195–207.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Zeng H, Zhang R, Jin B, Chen L. Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell Mol Immunol. 2015;12:566–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Koyama M, Kuns RD, Olver SD, Lineburg KE, Lor M, Teal BE, et al. Promoting regulation via the inhibition of DNAM-1 after transplantation. Blood. 2013;121:3511–20.

    PubMed  CAS  Google Scholar 

  21. Rostami A, Ciric B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci. 2013;333:76–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, Amoura Z. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun Rev. 2011;10:744–55.

    PubMed  CAS  Google Scholar 

  23. Collison LW, Vignali DA. In vitro Treg suppression assays. Methods Mol Biol (Clifton, NJ). 2011;707:21–37.

    CAS  Google Scholar 

  24. Schmitt EG, Haribhai D, Williams JB, Aggarwal P, Jia S, Charbonnier LM, et al. IL-10 produced by induced regulatory T cells (iTregs) controls colitis and pathogenic ex-iTregs during immunotherapy. J Immunol (Baltimore, Md : 1950). 2012;189:5638–48.

    PubMed Central  CAS  Google Scholar 

  25. Zhang P, Tey SK, Koyama M, Kuns RD, Olver SD, Lineburg KE, et al. Induced regulatory T cells promote tolerance when stabilized by rapamycin and IL-2 in vivo. J Immunol (Baltimore, Md : 1950). 2013;191:5291–303.

    CAS  Google Scholar 

  26. Bar-Or A, Hintzen RQ, Dale RC, Rostasy K, Bruck W, Chitnis T. Immunopathophysiology of pediatric CNS inflammatory demyelinating diseases. Neurology. 2016;87:S12–9.

    PubMed  CAS  Google Scholar 

  27. Gao Q, Zhang Y, Han C, Hu X, Zhang H, Xu X, et al. Blockade of CD47 ameliorates autoimmune inflammation in CNS by suppressing IL-1-triggered infiltration of pathogenic Th17 cells. J Autoimmun. 2016;69:74–85.

    PubMed  CAS  Google Scholar 

  28. Liu Y, Teige I, Birnir B, Issazadeh-Navikas S. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE. Nat Med. 2006;12:518–25.

    PubMed  CAS  Google Scholar 

  29. Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, et al. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol. 2016:292, 58–67.

    PubMed  CAS  Google Scholar 

  30. Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 2018;15:458–69.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity. 1996;4:573–81.

    PubMed  CAS  Google Scholar 

  32. Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda S, et al. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med. 2008;205:2959–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Fourcade J, Sun Z, Chauvin JM, Ka M, Davar D, Pagliano O, et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI insight. 2018;3:121157.

    PubMed  Google Scholar 

  34. Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L et al. Regulatory T cell plasticity and stability and autoimmune diseases. Clin Rev Allergy Immunol 2018.

  35. Carbone F, De Rosa V, Carrieri PB, Montella S, Bruzzese D, Porcellini A, et al. Regulatory T cell proliferative potential is impaired in human autoimmune disease. Nat Med. 2014;20:69–74.

    PubMed  CAS  Google Scholar 

  36. Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling. Cytokine. 2013;64:477–85.

    PubMed  CAS  Google Scholar 

  37. Yamada H. Current perspectives on the role of IL-17 in autoimmune disease. J Inflamm Res. 2010;3:33–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Hofmann SR, Rosen-Wolff A, Tsokos GC, Hedrich CM. Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. Clin Immunol (Orlando, Fla). 2012;143:116–27.

    CAS  Google Scholar 

  39. Atretkhany KN, Mufazalov IA, Dunst J, Kuchmiy A, Gogoleva VS, Andruszewski D, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A. 2018;115:13051–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Chen C, Rowell EA, Thomas RM, Hancock WW, Wells AD. Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem. 2006;281:36828–34.

    PubMed  CAS  Google Scholar 

  41. Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11:852–63.

    PubMed  CAS  Google Scholar 

  42. Wagner M, Sobczynski M, Karabon L, Bilinska M, Pokryszko-Dragan A, Pawlak-Adamska E, et al. Polymorphisms in CD28, CTLA-4, CD80 and CD86 genes may influence the risk of multiple sclerosis and its age of onset. J Neuroimmunol. 2015;288:79–86.

    PubMed  CAS  Google Scholar 

  43. Cribbs AP, Kennedy A, Penn H, Read JE, Amjadi P, Green P, et al. Treg cell function in rheumatoid arthritis is compromised by ctla-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway. Arthritis Rheumatol (Hoboken, NJ). 2014;66:2344–54.

    CAS  Google Scholar 

  44. Zhang B, Chikuma S, Hori S, Fagarasan S, Honjo T. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Proc Natl Acad Sci U S A. 2016;113:8490–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Lowther DE, Goods BA, Lucca LE, Lerner BA, Raddassi K, van Dijk D, et al. PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight. 2016;1:e85935.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81571531).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Liang, S., Jin, J. et al. CD226 attenuates Treg suppressive capacity via CTLA-4 and TIGIT during EAE. Immunol Res 67, 486–496 (2019). https://doi.org/10.1007/s12026-019-09112-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-019-09112-9

Keywords

Navigation