Skip to main content
Log in

Synthesis of the quinazolinone derivatives using an acid-functionalized magnetic silica heterogeneous catalyst in terms of green chemistry

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this research, the synthesis of the quinazolinone derivatives by the reaction of diaminoglyoxime with anthranilic acid or methyl 2-amino benzoate over an acetic acid-functionalized magnetic silica-based catalyst in water was described. The acetic acid-functionalized catalyst was prepared using a three-step procedure from magnetite NPs that initially coated with a layer of silica through the sol–gel process, modified with an aminosilane layer and functionalized with bromoacetic acid. The catalyst was characterized by means of spectroscopic and microscopic techniques, and its activity was investigated for the synthesis of the quinazolinones, bisquinazolinone and oxadiazole quinazolinones obtained from diaminoglyoxime in water at room temperature.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3
Scheme 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Biot MA (1956) Theory of deformation of a porous viscoelastic anisotropic solid. J Appl Phys 27(5):459–467

    Article  Google Scholar 

  2. Beck JS, Vartuli JC (1996) Recent advances in the synthesis, characterization and applications of mesoporous molecular sieves. Curr Opin Solid State Mater Sci 1:76–87

    Article  CAS  Google Scholar 

  3. Idris SA, Davidson CM, McManamon C, Morris MA, Anderson P, Gibson LT (2011) Large pore diameter MCM-41 and its application for lead removal from aqueous media. J Hazard Mater 185(2–3):898–904

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Yao J, Li H, Su D, Antonietti M (2011) Highly selective hydrogenation of phenol and derivatives over a Pd@ carbon nitride catalyst in aqueous media. J Am Chem Soc 133(8):2362–2365

    Article  CAS  PubMed  Google Scholar 

  5. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459

    Article  CAS  PubMed  Google Scholar 

  6. Shaabani A, Sepahvand H, Amini MM, Hashemzadeh A, Boroujeni MB, Badali E (2018) Tandem oxidative isocyanide-based cycloaddition reactions in the presence of MIL-101 (Cr) as a reusable solid catalyst. Tetrahedron 74(15):1832–1837

    Article  CAS  Google Scholar 

  7. Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120(3–4):389–398

    Article  CAS  Google Scholar 

  8. Zhang J, Wang S, Xu M, Wang Y, Zhu B, Zhang S, Huang W, Wu S (2009) Hierarchically porous ZnO architectures for gas sensor application. Cryst Growth Des 9(8):3532–3537

    Article  CAS  Google Scholar 

  9. Arruebo M (2012) Drug delivery from structured porous inorganic materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(1):16–30

    Article  CAS  PubMed  Google Scholar 

  10. Sepahvand H, Ghasemi E, Sharbati M, Mohammadi MS, Pirlar MA, Shahverdizadeh GH (2019) The magnetic graphene oxide/NHC catalyzed aerobic direct amidation and cross-dehydrogenative coupling of aldehydes. New J Chem 43(42):16555–16565

    Article  CAS  Google Scholar 

  11. Soleimani E, Torkaman S, Sepahvand H, Ghorbani S (2019) Ciprofloxacin-functionalized magnetic silica nanoparticles: as a reusable catalyst for the synthesis of 1H-chromeno [2, 3-d] pyrimidine-5-carboxamides and imidazo [1, 2-a] pyridines. Mol Divers 23(3):739–749

    Article  CAS  PubMed  Google Scholar 

  12. Weitkamp J (2000) Zeolites and catalysis. Solid State Ion 131(1–2):175–188

    Article  CAS  Google Scholar 

  13. Alabadi A, Razzaque S, Yang Y, Chen S, Tan B (2015) Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chem Eng J 281:606–612

    Article  CAS  Google Scholar 

  14. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Chang JS (2010) Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9(2):172–178

    Article  CAS  PubMed  Google Scholar 

  15. Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4(1):1300882

    Article  Google Scholar 

  16. Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63

    Article  PubMed  PubMed Central  Google Scholar 

  17. Soleimani E, Naderi Namivandi M, Sepahvand H (2017) ZnCl2 supported on Fe3O4@SiO2 core–shell nanocatalyst for the synthesis of quinolines via Friedländer synthesis under solvent-free condition. Appl Organomet Chem 31(2):e3566

    Article  Google Scholar 

  18. Vinu A, Hossain KZ, Ariga K (2005) Recent advances in functionalization of mesoporous silica. J Nanosci Nanotechnol 5(3):347–371

    Article  CAS  PubMed  Google Scholar 

  19. Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69(2–3):132–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Machado NB, Miguez JP, Bolina IC, Salviano AB, Gomes RA, Tavano OL, Mendes AA (2019) Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. Enzyme Microb Technol 128:9–21

    Article  CAS  PubMed  Google Scholar 

  21. Shaabani S, Shaabani A, Kucerakova M, Dusek M (2019) A One-Pot synthesis of oxazepine-quinazolinone bis-heterocyclic scaffolds via isocyanide-based three-component reactions. Front Chem 7:623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gatadi S, Lakshmi TV, Nanduri S (2019) 4 (3H)-Quinazolinone derivatives: promising antibacterial drug leads. Eur J Med Chem 170:157–172

    Article  CAS  PubMed  Google Scholar 

  23. Dravyakar BR, Khedekar PB, Khan T, Sherje AP, Patel KN, Suvarna V (2019) Design and development of novel 2-(Morpholinyl)-N-substituted phenylquinazolin-4-amines as selective COX-II inhibitor. Anti-Inflamm Anti-Allergy Agents Med Chem (Formerly Curr Med Chem-Anti-Inflamm Anti-Allergy Agents) 18(1):4–25

    Article  CAS  Google Scholar 

  24. Snieckus V, Richardson P (2019) Three-component synthesis of quinazolinones. Synfacts 15(04):0347

    Article  Google Scholar 

  25. Sharma S, Hopkins CR (2019) Review of transient receptor potential canonical (TRPC5) channel modulators and diseases: miniperspective. J Med Chem 62(17):7589–7602

    Article  CAS  PubMed  Google Scholar 

  26. Ahmadizadeh Shendy S, Shahverdizadeh GH, Babazadeh M, Hosseinzadeh-Khanmiri R, Es’haghi M (2019) Preparation and characterization of acetic acid-functionalized Fe3O4@SiO2 nanoparticles as an efficient nanocatalyst for the synthesis of nitrones in water. Silicon. https://doi.org/10.1007/s12633-019-00252-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirzaagha Babazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1047 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadizadeh Shendy, S., Babazadeh, M., Shahverdizadeh, G.H. et al. Synthesis of the quinazolinone derivatives using an acid-functionalized magnetic silica heterogeneous catalyst in terms of green chemistry. Mol Divers 25, 889–897 (2021). https://doi.org/10.1007/s11030-020-10033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10033-1

Keywords

Navigation