Skip to main content
Log in

Simultaneous quantification of free fatty acids and acylcarnitines in plasma samples using dansylhydrazine labeling and liquid chromatography–triple quadrupole mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Free fatty acid (FFA) and acylcarnitine (AcCar) are key elements of energy metabolism. Dysregulated levels of FFA and AcCar are associated with genetic defects and other metabolic disorders. Due to differences in the physicochemical properties of these two classes of compounds, it is challenging to quantify FFA and AcCar in human plasma using a single method. In this work, we developed a chemical isotope labeling (CIL)–based liquid chromatography–multiple reaction monitoring (LC-MRM) method to simultaneously quantify FFA and AcCar. Dansylhydrazine (DnsHz) was used to label the carboxylic acid moiety on FFA and AcCar. This resulted in the formation of a permanently charged ammonium ion for facile ionization in positive ionization mode and higher hydrophobicity for enhanced retention of short-chain analogs on reversed-phase LC columns and enabled absolute quantification by using heavy labeled DnsHz analogs as internal standards. Labeling conditions including the concentration and freshness of cross-linker, reaction time, and temperature were optimized. This method can successfully quantify all short-, medium- and long-chain FFAs and AcCars with greatly enhanced sensitivity. Using this method, 25 FFAs and 13 AcCars can be absolutely quantified and validated in human plasma samples within 12 min. Simultaneous quantification of FFA and AcCar enabled by this CIL-based LC-MRM method facilitates the investigation of fatty acid metabolism and has potential in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fritsche KL. The science of fatty acids and inflammation. Adv Nutr. 2015;6(3):293S–301S.

    Article  CAS  Google Scholar 

  2. Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr. 2002;21(6):495–505.

    Article  CAS  Google Scholar 

  3. Janssen CI, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res. 2014;53:1–17.

    Article  CAS  Google Scholar 

  4. Gann PH, Hennekens CH, Sacks FM, Grodstein F, Giovannucci EL, Stampfer MJ. Prospective study of plasma fatty acids and risk of prostate cancer. J Natl Cancer Inst. 1994;86(4):281–6.

    Article  CAS  Google Scholar 

  5. MacLean CH, Newberry SJ, Mojica WA, Khanna P, Issa AM, Suttorp MJ, et al. Effects of omega-3 fatty acids on cancer risk: a systematic review. JAMA. 2006;295(4):403–15.

    Article  CAS  Google Scholar 

  6. Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38(6):1154–63.

    Article  CAS  Google Scholar 

  7. Lavie CJ, Milani RV, Mehra MR, Ventura HO. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol. 2009;54(7):585–94.

    Article  CAS  Google Scholar 

  8. Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta. 2016;1863(10):2422–35.

    Article  CAS  Google Scholar 

  9. Chace DH, Hillman SL, Van Hove JL, Naylor EW. Rapid diagnosis of MCAD deficiency: quantitative analysis of octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem mass spectrometry. Clin Chem. 1997;43(11):2106–13.

    Article  CAS  Google Scholar 

  10. Knottnerus SJG, Bleeker JC, Wust RCI, Ferdinandusse S, IJlst L, Wijburg FA, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord. 2018;19(1):93–106.

    Article  CAS  Google Scholar 

  11. Chung KP, Chen GY, Chuang TY, Huang YT, Chang HT, Chen YF, et al. Increased plasma acetylcarnitine in sepsis is associated with multiple organ dysfunction and mortality: a multicenter cohort study. Crit Care Med. 2019;47(2):210–8.

    Article  CAS  Google Scholar 

  12. Goetzman ES. Advances in the understanding and treatment of mitochondrial fatty acid oxidation disorders. Curr Genet Med Rep. 2017;5(3):132–42.

    Article  Google Scholar 

  13. Merritt JL 2nd, Norris M, Kanungo S. Fatty acid oxidation disorders. Ann Transl Med. 2018;6(24):473.

    Article  CAS  Google Scholar 

  14. Peng M, Liu L, Jiang M, Liang C, Zhao X, Cai Y, et al. Measurement of free carnitine and acylcarnitines in plasma by HILIC-ESI-MS/MS without derivatization. J Chromatogr B. 2013;932:12–8.

    Article  CAS  Google Scholar 

  15. Han LD, Xia JF, Liang QL, Wang Y, Wang YM, Hu P, et al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta. 2011;689(1):85–91.

    Article  CAS  Google Scholar 

  16. Yi LZ, He J, Liang YZ, Yuan DL, Chau FT. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Lett. 2006;580(30):6837–45.

    Article  CAS  Google Scholar 

  17. Lacaze JP, Stobo LA, Turrell EA, Quilliam MA. Solid-phase extraction and liquid chromatography--mass spectrometry for the determination of free fatty acids in shellfish. J Chromatogr A. 2007;1145(1–2):51–7.

    Article  CAS  Google Scholar 

  18. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461–78.

    Article  Google Scholar 

  19. Chen J, Lyu Q, Yang M, Chen Z, He J. Selective elimination of the free fatty acid fraction from esterified fatty acids in rat plasma through chemical derivatization and immobilization on amino functionalized silica nano-particles. J Chromatogr A. 2016;1431:197–204.

    Article  CAS  Google Scholar 

  20. Zhao S, Li L. Dansylhydrazine isotope labeling LC-MS for comprehensive carboxylic acid submetabolome profiling. Anal Chem. 2018;90(22):13514–22.

    Article  CAS  Google Scholar 

  21. Zhao S, Dawe M, Guo K, Li L. Development of high-performance chemical isotope labeling LC-MS for profiling the carbonyl submetabolome. Anal Chem. 2017;89(12):6758–65.

    Article  CAS  Google Scholar 

  22. Guo K, Li L. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal Chem. 2009;81(10):3919–32.

    Article  CAS  Google Scholar 

  23. Nakajima N, Ikada Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug Chem. 1995;6(1):123–30.

    Article  CAS  Google Scholar 

  24. Novak P, Kruppa GH. Intra-molecular cross-linking of acidic residues for protein structure studies. Eur J Mass Spectrom. 2008;14(6):355–65.

    Article  CAS  Google Scholar 

  25. Chiu HH, Tsai SJ, Tseng YJ, Wu MS, Liao WC, Huang CS, et al. An efficient and robust fatty acid profiling method for plasma metabolomic studies by gas chromatography-mass spectrometry. Clin Chim Acta. 2015;451(Pt B):183–90.

    Article  CAS  Google Scholar 

  26. Della Corte A, Chitarrini G, Di Gangi IM, Masuero D, Soini E, Mattivi F, et al. A rapid LC-MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Talanta. 2015;140:52–61.

    Article  CAS  Google Scholar 

  27. Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J Lipid Res. 2017;58(12):2275–88.

    Article  CAS  Google Scholar 

  28. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51(11):3299–305.

    Article  CAS  Google Scholar 

  29. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK123499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qibin Zhang.

Ethics declarations

Deidentified, commercial human plasma samples were used in this work. Research conducted with unidentified samples is not human subjects research and is not regulated by the Federal Policy for the Protection of Human Subjects (45 CFR Part 46).

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Gy., Zhang, Q. Simultaneous quantification of free fatty acids and acylcarnitines in plasma samples using dansylhydrazine labeling and liquid chromatography–triple quadrupole mass spectrometry. Anal Bioanal Chem 412, 2841–2849 (2020). https://doi.org/10.1007/s00216-020-02514-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02514-x

Keywords

Navigation