Skip to main content
Log in

Rational selection of antifungal drugs to propose a new formulation strategy to control Candida biofilm formation on venous catheters

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Introduction

Infections associated with medical devices are often related to colonization by Candida spp. biofilm; in this way, numerous strategies have been developed and studied, mainly in order to prevent this type of fungal growth.

Aim

Considering the above, the main objective of the present study is to make a rational choice of the best antifungal therapy for the in vitro treatment of the biofilm on venous catheters, proposing an innovative formulation of a film-forming system to coat the surface in order to prevent the formation of biofilms.

Methodology

Anidulafungin, fluconazole, voriconazole, ketoconazole, amphotericin B, and the association of anidulafungin and amphotericin B were tested against biofilms of C. albicans, C. tropicalis, and C. parapsilosis strains in microtiter plates and in a polyurethane catheter. Besides, anidulafungin, amphotericin B, and the combination of both were incorporated in a film-forming system and were evaluated against biofilm.

Results

The superior activity of anidulafungin was demonstrated in relation to the other antifungal agents. Although amphotericin B showed good activity, high concentrations were required. The combination showed a synergistic action, in solution and in the formulation, showing excellent results, with activity above 90%.

Conclusion

Due to the superiority of anidulafungin and the synergistic activity of the combination, these alternatives were the most promising options for use in a formulation proposal as a new strategy to combat the Candida spp. biofilm. These formulations demonstrated high in vitro performance in the prevention of biofilms, indicating that they are candidates with great potential for in vivo tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chang YL, Yua SJ, Heitmanb J, Wellingtonc M, Chen YL (2017) New facets of antifungal therapy. Virulence 8:222–236. https://doi.org/10.1080/21505594.2016.1257457

    Article  CAS  PubMed  Google Scholar 

  2. Pappas PG, Lionakis MS, Arendrup MC, Zeichner LO, Kullberg BJ (2018) Invasive candidiasis. Nat Rev Dis Primers 4(Article number: 18026). https://doi.org/10.1038/nrdp.2018.26

  3. Guinea J (2014) Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 20:5–10. https://doi.org/10.1111/1469-0691.12539

    Article  PubMed  Google Scholar 

  4. Ramage G, Saville SP, Thomas DP, López-Ribot J (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638. https://doi.org/10.1128/EC.4.4.633-638.2005

  5. Ramage G, Rajendran R, Sherry L, Williams C (2012) Fungal biofilm resistance. Int J Microbiol:1–14. https://doi.org/10.1155/2012/528521

  6. Silva S, Rodrigues CF, Araújo D, Rodrigues ME, Henriques M (2017) Candida species biofilms’ antifungal resistance. J Fungi 3:8. https://doi.org/10.3390/jof3010008

    Article  CAS  Google Scholar 

  7. Tobudic S, Kratzer C, Lassnigg A, Graninger W, Presterl E (2010) In vitro activity of antifungal combinations against Candida albicans biofilms. J Infect Chemother 65:271–274. https://doi.org/10.1093/jac/dkp429

    Article  CAS  Google Scholar 

  8. Bouza E, Guinea J, Guembe M (2015) The role of antifungals against Candida biofilm in catheter-related Candidemia. Antibiotics 4:1–17. https://doi.org/10.3390/antibiotics4010001

    Article  CAS  Google Scholar 

  9. Tascini C, Sozio E, Corte L, Sbrana F, Scarparo C, Ripoli A, Bertolino G, Merelli M, Tagliaferri E, Corcione A, Bassetti M, Cardinali G, Menichetti F (2017) The role of biofilm forming on mortality in patients with candidemia: a study derived from real world data. Infect Dis Ther 0:1–6. https://doi.org/10.1080/23744235.2017.1384956

    Article  Google Scholar 

  10. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, Raad II, Rijnders BJA, Sherertz RJ, Warren DK (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: update by the infectious diseases. https://doi.org/10.1086/599376

  11. De Cremer K, Staes I, Delattin N, Cammue BP, Thevissen K, De Brucker K (2015) Combinatorial drug approaches to tackle Candida albicans biofilms. Expert Rev Anti-Infect Ther 13:973–984. https://doi.org/10.1586/14787210.2015.1056162

    Article  CAS  PubMed  Google Scholar 

  12. Ramage G, Robertson SN, Williams C (2014) Strength in numbers: antifungal strategies against fungal biofilms. Int J Antimicrob Agents 43:114–120. https://doi.org/10.1016/j.ijantimicag.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  13. Karkhanis YD, Schmatz DM (1998) Novel enzyme-linked immunoassay to determine nanogram levels of Pneumocandins in human plasma. J Clin Microbiol 36:1414–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW (2012) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33:5967–5982. https://doi.org/10.1016/j.biomaterials.2012.05.031

    Article  CAS  PubMed  Google Scholar 

  15. Giles C, Lamont-Friedrich SJ, Michl TD, Griesser HJ, Coad BR (2018) The importance of fungal pathogens and antifungal coatings in medical device infections. Biotechnol Adv 36:264–280. https://doi.org/10.1016/j.biotechadv.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  16. Iñigo M, Pemán J, Del Pozo JL (2012) Antifungal activity against Candida biofilms. Int J Artif Organs 35:780–791

    Article  PubMed  Google Scholar 

  17. Been RA, Bernatchez SF, Conrad-Vlasak DM, Asmus RA, Ekholm BP, Parks PJ (2016) In vivo methods to evaluate a new skin protectant for loss of skin integrity. Wound Repair Regen 24:851–859. https://doi.org/10.1111/wrr.12455

    Article  PubMed  Google Scholar 

  18. Yang S, Yang Y, Cui S, Feng Z, Du Y, Song Z, Tong Y, Yang L, Wang Z, Zeng H, Zou Q, Sun H (2018) Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties. Int J Nanomedicine 13:4987–5002. https://doi.org/10.2147/ijn.s161680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson MD, MacDougall C, Ostrosky-Zeichner L, Perfect JR, Rex JH (2004) Combination antifungal therapy. Antimicrob Agents Chemother 48:693–715. https://doi.org/10.1128/AAC.48.3.693-715.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gulati M, Nobile CJ (2016) Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 18:310–321. https://doi.org/10.1016/j.micinf.2016.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rex JH, Clinical and Laboratory Standards Institute (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard, 3rd edn. National Committee for Clinical Laboratory Standards, Wayne

    Google Scholar 

  22. Bachmann SP, Walle KV, Ramage G, Patterson TF, Wickes BL, Graybill JR, López-Ribot JL (2002) In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 46:3591–3596. https://doi.org/10.1128/AAC.46.11.3591-3596.2002

  23. Pippi B, Machado GRM, Bergamo VZ, Alves RJ, Andrade SF, Fuentefria AM (2018) Clioquinol is a promising preventive morphological switching compound in the treatment of Candida infections linked to the use of intrauterine devices. J Med Microbiol 67:1655–1663. https://doi.org/10.1099/jmm.0.00085

    Article  CAS  PubMed  Google Scholar 

  24. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Ćirković I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

    Article  PubMed  Google Scholar 

  25. Ramage G, Walle KV, Wickes BL, López-Ribot JL (2001) Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45:2475–2479. https://doi.org/10.1128/AAC.45.9.2475-2479.2001

  26. Shuford JA, Piper KE, Steckelberg JM, Patel R (2007) In vitro biofilm characterization and activity of antifungal agents alone and in combination against sessile and planktonic clinical Candida albicans isolates. Diagn Microbiol Infect Dis 57:277–281. https://doi.org/10.1016/j.diagmicrobio.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  27. Machado GRM, de Andrade SF, Pippi B, Bergamo VZ, Berlitz SJ, Lopes W, Lavorato SN, Guerreiro ICK, Vainstein MH, Teixeira ML, Alves RJ, Fuentefria AM (2019) Chloroacetamide derivatives as a promising topical treatment for fungal skin infections. Mycologia 111:612–623. https://doi.org/10.1080/00275514.2019.1620550

    Article  PubMed  Google Scholar 

  28. Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44. https://doi.org/10.1007/s00253-011-3477-y

    Article  CAS  PubMed  Google Scholar 

  29. Schroeder IZ, Franke P, Schaefer UF, Leh C-M (2007) Development and characterization of film forming polymeric solutions for skin drug delivery. Eur J Pharm Biopharm 65:111–121. https://doi.org/10.1016/j.ejpb.2006.07.015

    Article  CAS  Google Scholar 

  30. Paradkar M, Thakkar V, Soni T, Gandhi T, Gohel M (2015) Formulation and evaluation of clotrimazole transdermal spray. Drug Dev Ind Pharm 41:1718–1725. https://doi.org/10.3109/03639045.2014.1002408

    Article  CAS  PubMed  Google Scholar 

  31. Kathe K, Kathpalia H (2017) Film forming systems for topical and transdermal drug delivery. Asian J Pharm Sci 12:487–497. https://doi.org/10.1016/j.ajps.2017.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tran TTD, Tran PHL (2019) Controlled release film forming systems in drug delivery: the potential for efficient drug delivery. Pharmaceutics 11:290. https://doi.org/10.3390/pharmaceutics11060290

    Article  CAS  PubMed Central  Google Scholar 

  33. Girardot M, Imbert I (2016) Novel strategies against Candida biofilms: interest of synthetic compounds. Future Microbiol 11:69–79. https://doi.org/10.2217/fmb.15.118

    Article  CAS  PubMed  Google Scholar 

  34. Robbins N, Wright GD, Cowen LE (2016) Antifungal drugs: the current armamentarium and development of new agents. Microbiol Spectrum 4:903–922. https://doi.org/10.1128/microbiolspec.funk-0002-2016

    Article  CAS  Google Scholar 

  35. Fuentefria AM, Pippi B, Dalla Lana DF, Donato KK, de Andrade SF (2017) Antifungals discovery: an insight into new strategies to combat antifungal resistance. Lett Appl Microbiol 66:2–13. https://doi.org/10.1111/lam.12820

    Article  CAS  PubMed  Google Scholar 

  36. Bujdáková H (2016) Management of Candida biofilms – state of knowledge and new options for prevention and eradication. Future Microbiol 11:235–251. https://doi.org/10.2217/fmb.15.139

    Article  CAS  PubMed  Google Scholar 

  37. Hacioglu M, Tan ASB, Dosler S, Inan N, Otuk G (2018) In vitro activities of antifungals alone and in combination with tigecycline against Candida albicans biofilms. PeerJ 6:e5263. https://doi.org/10.7717/peerj.5263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Turan H, Demirbilek M (2018) Biofilm-forming capacity of blood-borne Candida albicans strains and effects of antifungal agents. Rev Argent Microbiol 50:62–69. https://doi.org/10.1016/j.ram.2017.05.003

    Article  PubMed  Google Scholar 

  39. Chandra J, Mukherjee PK (2015) Candida biofilms: development, architecture and resistance. Microbiol Spectrum 3. https://doi.org/10.1128/microbiolspec.MB-0020-2015

  40. Cavalheiro M, Teixeira MC (2018) Candida biofilms: threats, challenges and promising strategies. Front Med 5(ARTICLE 328). https://doi.org/10.3389/fmed.2018.00028

  41. Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J (2009) Biofilms of non-Candida albicans, Candida species: quantification, structure and matrix composition. Med Mycol 47:681–689. https://doi.org/10.3109/13693780802549594

    Article  CAS  PubMed  Google Scholar 

  42. Pannanusorn S, Fernandez V, Romling U (2013) Prevalence of biofilm formation in clinical isolates of Candida species causing bloodstream infection. Mycoses 56:264–272. https://doi.org/10.1111/myc.12014

    Article  PubMed  Google Scholar 

  43. Núñez-Beltrán A, López-Romero E, Cuéllar-Cruz M (2017) Identification of proteins involved in the adhesion of Candida species to different medical devices. Microb Pathog 107:293–303. https://doi.org/10.1016/j.micpath.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  44. Fujimoto K, Takemoto K (2018) Efficacy of liposomal amphotericin B against four species of Candida biofilms in an experimental mouse model of intravascular catheter infection. J Infect Chemother:1–7. https://doi.org/10.1016/j.jiac.2018.08.011

  45. Hamill RJ (2013) Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73:919–934. https://doi.org/10.1007/s40265-013-0069-4

    Article  CAS  PubMed  Google Scholar 

  46. Valentín A, Cantón E, Pemán J, Fernandez-Rivero ME, Tormo-Mas MA, Martínez JP (2016) In vitro activity of anidulafungin in combination with amphotericin B or voriconazole against biofilms of five Candida species. J Antimicrob Chemother 71:3449–3452. https://doi.org/10.1093/jac/dkw316

    Article  CAS  PubMed  Google Scholar 

  47. Walraven CJ, Lee SA (2012) Antifungal lock therapy. Antimicrob Agents Chemother 57:1–8. https://doi.org/10.1128/AAC.01351-12

    Article  CAS  PubMed  Google Scholar 

  48. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36:288–305. https://doi.org/10.1111/j.1574-6976.2011.00278.x

    Article  CAS  PubMed  Google Scholar 

  49. Nett JE (2014) Future directions for anti-biofilm therapeutics targeting Candida. Expert Rev Anti-Infect Ther 12:375–382. https://doi.org/10.1586/14787210.2014.885838

    Article  CAS  PubMed  Google Scholar 

  50. Basas J, Morer A, Ratia C, Martín MT, Del Pozo JL, Gomis X, Rojo-Molinero E, Torrents E, Almirante B, Gavalda J (2016) Efficacy of anidulafungin in the treatment of experimental Candida parapsilosis catheter infection using an antifungal-lock technique. J Antimicrob Chemother 71:2895–2901. https://doi.org/10.1093/jac/dkw251

    Article  CAS  PubMed  Google Scholar 

  51. Campoy S, Adrio JL (2017) Antifungals. Biochem Pharmacol 133:86–96. https://doi.org/10.1016/j.bcp.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  52. Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698. https://doi.org/10.1016/j.bmc.2012.04.045

    Article  CAS  PubMed  Google Scholar 

  53. Estivill D, Arias A, Torres-Lana A, Carrillo-Muñoz AJ, Arévalo MP (2011) Biofilm formation by five species of Candida on three clinical materials. J Microbiol Methods 86:238–242. https://doi.org/10.1016/j.mimet.2011.05.019

    Article  CAS  PubMed  Google Scholar 

  54. Cui J, Ren B, Tong Y, Dai H, Zhang L (2015) Synergistic combinations of antifungals and antivirulence agents to fight against Candida albicans. Virulence 6:362–371. https://doi.org/10.1080/21505594.2015.1039885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou C, Song H, Loh J, She J, Deng L, Bo L (2018) Grafting antibiofilm polymer hydrogel film onto catheter by SARA SI-ATRP. J Biomater Sci Polym Ed:1–27. https://doi.org/10.1080/09205063.2018.150726

  56. Ammar HO, Ghorab M, Mahmoud AA, Makram TS, Ghoneim AM (2011) Rapid pain relief using transdermal film forming polymeric solution of ketorolac. Pharm Dev Technol 18:1005–1016. https://doi.org/10.3109/10837450.2011.627867

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Núcleo de Apoio Estatístico and Centro de Microscopia e Microanálise, Campus do Vale, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS, Prof. Dr. Patrícia Valente da Silva, and to Dr. Bruna Pippi. A. M. Fuentefria is grateful to CNPq for their research fellowships.

Funding

This work was supported by the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS–EDITAL 04/2016 –PRONUPEQ 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Reginatto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: Rosana Puccia

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1056 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reginatto, P., Bergamo, V.Z., Berlitz, S.J. et al. Rational selection of antifungal drugs to propose a new formulation strategy to control Candida biofilm formation on venous catheters. Braz J Microbiol 51, 1037–1049 (2020). https://doi.org/10.1007/s42770-020-00242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00242-z

Keywords

Navigation