Skip to main content

Advertisement

Log in

Solvent-free synthesis of isoindolo[2,1-c]pyrazolo[1,5-a]quinazoline and pyrazolo[5′,1′:2,3]pyrimido[6,1-a]isoindol derivatives through a one-pot three-component reaction

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Some 5-substituted 3-aminopyrazoles were used for the synthesis of isoindolo[2,1-c]pyrazolo[1,5-a]quinazoline and pyrazolo[5′,1′:2,3]pyrimido[6,1-a]isoindol derivatives via a mild and efficient one-pot three-component reaction with 2-formylbenzoic acid and different CH-acids under solvent-free condition.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3

References

  1. Erythropel HC, Zimmerman JB, de Winter TM, Petitjean L, Melnikov F, Lam CH, Lounsbury AW, Mellor KE, Janković NZ, Tu Q, Pincus LN, Falinski MM, Shi W, Coish P, Plata DL, Anastas PT (2018) The green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem 20:1929–1961. https://doi.org/10.1039/C8GC00482J

    Article  CAS  Google Scholar 

  2. Singh MS, Chowdhury S (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv 2:4547–4592. https://doi.org/10.1039/C2RA01056A

    Article  CAS  Google Scholar 

  3. Martins MAP, Frizzo CP, Moreira DN, Buriol L, Machado P (2009) Solvent-free heterocyclic synthesis. Chem Rev 109:4140–4182. https://doi.org/10.1021/cr9001098

    Article  CAS  PubMed  Google Scholar 

  4. Graaff C, Ruijter E, Orru R (2012) Recent developments in asymmetric multicomponent reactions. Chem Soc Rev 41:3969–4009. https://doi.org/10.1039/C2CS15361K

    Article  PubMed  Google Scholar 

  5. Manley B, Anastas PT, Cue BW (2008) Frontiers in green chemistry: meeting the grand challenges for sustainability in R&D and manufacturing. J Clean Prod 16:743–750. https://doi.org/10.1016/j.jclepro.2007.02.025

    Article  Google Scholar 

  6. Brauch S, Berkel SSV, Westermann B (2013) Higher-order multicomponent reactions: beyond four reactants. Chem Soc Rev 42:4948–4962. https://doi.org/10.1039/C3CS35505E

    Article  CAS  PubMed  Google Scholar 

  7. Ramon DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed 44:1602–1634. https://doi.org/10.1002/anie.200460548

    Article  CAS  Google Scholar 

  8. Tietze LF, Brasche G, Gericke KM (2006) Domino reactions in organic synthesis. Wiley, Weinheim. ISBN 978-3-527-29060-4

    Book  Google Scholar 

  9. Tietze LF, Brazel CC, Holsken S, Magull J, Ringe A (2008) Total synthesis of polyoxygenated cembrenes. Angew Chem Int Ed 47:5246–5249. https://doi.org/10.1002/anie.200800626

    Article  CAS  Google Scholar 

  10. Nicolaou KC, Edmonds DJ, Bulger PG (2006) Cascade reactions in total synthesis. Angew Chem Int 45:7134–7186. https://doi.org/10.1002/anie.200601872

    Article  CAS  Google Scholar 

  11. Parikh PK, Marvaniya HM, Sen DJ (2011) Chemistry of bioactive tricyclic fused heterocyclic ring having one heteroatom. Int J Drug Dev Res 3:44–50

    CAS  Google Scholar 

  12. Khan MF, Alam MM, Verma G, Akhtar W, Akhter M, Shaquiquzzaman M (2016) The therapeutic voyage of pyrazole and its analogs: a review. Eur J Med Chem 120:170–201. https://doi.org/10.1016/j.ejmech.2016.04.077

    Article  CAS  PubMed  Google Scholar 

  13. Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-aizari FA, Ansar M (2018) Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules 23:134–219. https://doi.org/10.3390/molecules23010134

    Article  CAS  PubMed Central  Google Scholar 

  14. Faria JV, Vegi PF, Carvalho Miguita AG, dos Santos MS, Rolim Bernardino AM (2017) Recently reported biological activities of pyrazole compounds. Bioorg Med Chem 25:5891–5903. https://doi.org/10.1016/j.bmc.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  15. Kumar V, Kaur K, Gupta GK, Sharma AK (2013) Pyrazole containing natural products: synthetic preview and biological significance. Eur J Med Chem 69:735–753. https://doi.org/10.1016/j.ejmech.2013.08.053

    Article  CAS  PubMed  Google Scholar 

  16. Kumar S, Bawa S, Drabu S, Kumar R, Gupta H (2009) Biological activities of pyrazoline derivatives a recent development. Recent Pat Antiinfect Drug Discov 4:154–163. https://doi.org/10.2174/157489109789318569

    Article  CAS  PubMed  Google Scholar 

  17. Küçükgüzel SG, Şenkardeş S (2015) Recent advances in bioactive pyrazoles. Eur J Med Chem 97:786–815. https://doi.org/10.1016/j.ejmech.2014.11.059

    Article  CAS  PubMed  Google Scholar 

  18. DeRosa TF (2006) Pyrazoles. In: Derosa TF (ed) Advances in synthetic organic chemistry and methods reported in US patents. Elsevier Science, Amsterdam. ISBN: 9780080444741

  19. Wiley RH, Behr LC, Fusco R, Jarboe CH (1967) The chemistry of heterocyclic compounds: pyrazoles, pyrazolines, pyrazolidines, indazoles and condensed rings. Wiley, New York

    Book  Google Scholar 

  20. Aggarwal R, Kumar V, Kumar R, Singh SP (2011) Approaches towards the synthesis of 5-aminopyrazoles. Beilstein J Org Chem 7:179–197. https://doi.org/10.3762/bjoc.7.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaabani A, Nazeri MT, Afshari R (2018) 5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis. Mol Divers. https://doi.org/10.1007/s11030-018-9902-8

    Article  PubMed  Google Scholar 

  22. Breytenbach JC, Van Dyk S, Vanden Heever I, Allin SM, Hodkinson CC, Northfield CJ, Page MI (2000) Synthesis and antimicrobial activity of some isoindolin-1-ones derivatives. Bioorg Med Chem Lett 10:1629–1631. https://doi.org/10.1016/S0960-894X(00)00306-1

    Article  CAS  PubMed  Google Scholar 

  23. Sun C, Xu B (2008) A tandem elimination-cyclization-suzuki approach: efficient one-pot synthesis of functionalized (z)-3-(arylmethylene) isoindolin-1-ones. J Org Chem 18:7361–7364. https://doi.org/10.1021/jo801219j

    Article  CAS  Google Scholar 

  24. Maugeri C, Alisi MA, Apicella C, Cellai L, Dragone P, Fioravanzo E, Florio S, Furlotti G, Mangano G, Ombrato R, Luisi R, Pompei R, Rincicotti V, Russo V, Vitiello M, Cazzolla N (2008) New anti-viral drugs for the treatment of the common cold. Bioorg Med Chem 16:3091–3107. https://doi.org/10.1016/j.bmc.2007.12.030

    Article  CAS  PubMed  Google Scholar 

  25. Anzini M, Cappelli A, Vomero S, Giorgi G, Langer T, Bruni G, Romeo MK, Basile AS (1996) Molecular basis of peripheral vs central benzodiazepine receptor selectivity in a new class of peripheral benzodiazepine receptor ligands related to alpidem. J Med Chem 39:4275–4284. https://doi.org/10.1021/jm960325j

    Article  CAS  PubMed  Google Scholar 

  26. Lu N, Wang L, Li Z, Zhang W (2012) A concise synthesis of 3-(1-alkenyl)isoindolin-1-ones and 5-(1-alkenyl)pyrrol-2-ones by the intermolecular coupling reactions of N-acyliminium ions with unactivated olefins. Beilstein J Org Chem 8:192–200. https://doi.org/10.3762/bjoc.8.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tian Y, Sun J, Zhang K, Li G, Xu F (2018) Catalyst-free synthesis of 3-(2-quinolinemethylene)-substituted isoindolinones in water. Synthesis 50:2255–2265. https://doi.org/10.1055/s-0037-1609491

    Article  CAS  Google Scholar 

  28. Chien TC, Chen CS, Yu FH, Chern JW (2004) Nucleosides XI. Synthesis and antiviral evaluation of 5′-alkylthio-5′-deoxy quinazolinone nucleoside derivatives as s-adenosyl-l-homocysteine analogs. Chem Pharm Bull 52:1422–1426. https://doi.org/10.1248/cpb.52.1422

    Article  CAS  Google Scholar 

  29. Henderson EA, Bavetsias V, Theti DS, Wilson SC, Clauss R, Jackman AL (2006) Targeting the α-folate receptor with cyclopenta[g]quinazoline-based inhibitors of thymidylate synthase. Bioorg Med Chem 14:5020–5042. https://doi.org/10.1016/j.bmc.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  30. Leamon CP, Low PS (1994) Selective targeting of malignant cells with cytotoxin-folate conjugates. J Drug Target 2:101–112. https://doi.org/10.3109/10611869409015898

    Article  CAS  PubMed  Google Scholar 

  31. Rohini R, Shanker K, Reddy PM, Ravinder V (2009) Mono and bis-6-arylbenzimidazo[1,2-c]quinazolines: a new class of antimicrobial agents. Eur J Med Chem 44:3330–3339. https://doi.org/10.1016/j.ejmech.2009.03.022

    Article  CAS  PubMed  Google Scholar 

  32. Kumar A, Rajput CS (2009) Synthesis and anti-inflammatory activity of newer quinazolin-4-one derivatives. Eur J Med Chem 44:83–90. https://doi.org/10.1016/j.ejmech.2008.03.018

    Article  CAS  PubMed  Google Scholar 

  33. Bekhit AA, Khalil MA (1998) Non-steroidal anti-inflammatory agents: synthesis of novel benzopyrazolyl, benzoxazolyl and quinazolinyl derivatives of 4(3H)-quinazolinones. Pharmazie 53:539–543

    CAS  PubMed  Google Scholar 

  34. Deetz MJ, Malerich JP, Beatty AM, Smith BD (2001) One-step synthesis of 4(3H)-quinazolinones. Tetrahedron Lett 42:1851–1854. https://doi.org/10.1016/S0040-4039(01)00096-X

    Article  CAS  Google Scholar 

  35. Khosropour AR, Mohammadpoor-Baltork I, Ghorbankhani H (2006) Bi(TFA)3–[nbp]FeCl4: a new, efficient and reusable promoter system for the synthesis of 4(3H)-quinazolinone derivatives. Tetrahedron Lett 47:3561–3564. https://doi.org/10.1016/j.tetlet.2006.03.079

    Article  CAS  Google Scholar 

  36. Limbach PA, Crain PF, Mc Closkey JA (1994) Summary: the modified nucleosides of RNA. Nucleic Acids Res 22:2183–2196. https://doi.org/10.1093/nar/22.12.2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joffe AM, Farley JD, Linden D, Goldsand G (1989) Trimethoprim-sulfamethoxazole-associated aseptic meningitis: case reports and review of the literature. Am J Med 87:332–338. https://doi.org/10.1016/S0002-9343(89)80160-3

    Article  CAS  PubMed  Google Scholar 

  38. Rosemeyer H (2004) The chemodiversity of purine as a constituent of natural products. Chem Biodivers 1:361–401. https://doi.org/10.1002/cbdv.200490033

    Article  CAS  PubMed  Google Scholar 

  39. Liu V, Mackool BT (2009) Mycophenolate in dermatology. J Dermatol Treat 141:203–211. https://doi.org/10.1080/09546630310016826

    Article  CAS  Google Scholar 

  40. Dzierzbicka K, Trzonkowski P, Sewerynek P, Myśliwski A (2003) Synthesis and cytotoxic activity of conjugates of muramyl and normuramyl dipeptides with batracylin derivatives. J Med Chem 46:978–986. https://doi.org/10.1021/jm021067v

    Article  CAS  PubMed  Google Scholar 

  41. Abdel-Latif FF, El-Shaieb KM, El-Deen AG (2011) An efficient and simple route to prospective biologically active isoindoloquinazoline, pyrimidine and thiazine derivatives using 2-amino-N-arylbenzamidine and related compounds as starting materials. Z Naturforsch B 66:965–971. https://doi.org/10.1515/znb-2011-0916

    Article  CAS  Google Scholar 

  42. El-Tamany EH, Sowellim SZ, Hamed AA, Radwan AS (2015) Synthesis and antimicrobial activity of some isoindole derivatives. Res Chem Intermed 41:2675–2685. https://doi.org/10.1007/s11164-013-1378-7

    Article  CAS  Google Scholar 

  43. Gao L, Song Y, Zhang X, Guo S, Fan X (2014) Copper-catalyzed tandem reactions of 2-bromobenzaldehydes/ketones with aminopyrazoles toward the synthesis of pyrazolo[1,5-a]quinazolines. Tetrahedron Lett 55:4997–5002. https://doi.org/10.1016/j.tetlet.2014.07.028

    Article  CAS  Google Scholar 

  44. Verma AK, Jha RR, Sankar V, Singh RP (2013) Selective synthesis of 4,5-dihydroimidazo- and imidazo[1,5-a]quinoxalines via modified Pictet-Spengler reaction. Tetrahedron Lett 54:5984–5990. https://doi.org/10.1016/j.tetlet.2013.08.052

    Article  CAS  Google Scholar 

  45. Shekarrao K, Kaishap PP, Saddanapu V, Addlagatta A, Gogoi S, Boruah R (2014) Microwave-assisted palladium mediated efficient synthesis of pyrazolo[3,4-b]pyridines, pyrazolo[3,4-b]quinolines, pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]quinazolines. RSC Adv 4:24001–24006. https://doi.org/10.1039/C4RA02865A

    Article  CAS  Google Scholar 

  46. Rahmati A, Alizadeh-Kouzehrash M (2011) Synthesis of N-Alkyl-2-aryl-5H-imidazo[1,2-b]pyrazol-3-amines by a three-component condensation reaction. Synthesis 18:2913–2920. https://doi.org/10.1055/s-0030-1260154

    Article  CAS  Google Scholar 

  47. Rahmati A, Eskandari M, Alizadeh-Kouzehrash M (2013) Synthesis of 3-(benzylideneamino)-2-phenyl-5H-imidazo[1,2-b]pyrazole-7-carbonitriles via a four- component condensation reaction. Tetrahedron 69:4199–4204. https://doi.org/10.1016/j.tet.2013.03.103

    Article  CAS  Google Scholar 

  48. Rahmati A, Alizadeh-Kouzehrash M (2019) A four-component reaction: regio- and chemoselective formation of 7-amino-2-(tert-butyl)-5-aryl-4,5-dihydropyrazolo[1,5-a]pyrimidine-6-carbonitrile. Mol Divers. https://doi.org/10.1007/s11030-019-09976-x

    Article  PubMed  Google Scholar 

  49. Wade LG (2013) Organic chemistry, 8th edn. M A Pearson, Boston. ISBN-13: 978-0321768414

Download references

Acknowledgements

We gratefully acknowledge financial support from the Research Council of the University of Isfahan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Rahmati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh-Kouzehrash, M., Rahmati, A. Solvent-free synthesis of isoindolo[2,1-c]pyrazolo[1,5-a]quinazoline and pyrazolo[5′,1′:2,3]pyrimido[6,1-a]isoindol derivatives through a one-pot three-component reaction. Mol Divers 25, 1123–1130 (2021). https://doi.org/10.1007/s11030-020-10052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10052-y

Keywords

Navigation