Skip to main content

Advertisement

Log in

Low-density lipoprotein receptor-related protein 6-mediated signaling pathways and associated cardiovascular diseases: diagnostic and therapeutic opportunities

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Low-density lipoprotein receptor-related protein 6 (LRP6) is a member of the low-density lipoprotein receptors (LDLRs) family and accumulating evidence points to the critical role of LRP6 in cardiovascular health and homeostasis. In addition to presenting the well-appreciated roles in canonical signaling regulating blood pressure, blood glucose, lipid metabolism, atherosclerosis, cardiac valve disease, cardiac development, Alzheimer’s disease and tumorigenesis, LRP6 also inhibits non-canonical Wnt signals that promote arterial smooth muscle cell proliferation and vascular calcification. Noticeably, the role of LRP6 is displayed in cardiometabolic disease, an increasingly important clinical burden with aging and obesity. The prospect for cardiovascular diseases treatment via targeting LRP6-mediated signaling pathways may improve central blood pressure and lipid metabolism, and reduce neointima formation and myocardial ischemia–reperfusion injury. Thus, a deep and comprehensive understanding of LRP6 structure, function and signaling pathways will contribute to clinical diagnosis, therapy and new drug development for LRP6-related cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli

Axin:

Scaffold protein

CAD:

Coronary artery disease

CE:

Convergent extension

CK:

Casein kinase

Cx43:

Connexin 43

DKK:

Dickkopf-related protein

DORV:

Double outlet right ventricle

Drp1–mTOR–TFEB signaling:

Dynamin-related protein 1–rapamycin–transcription factor EB

DVL:

Dishevelled protein family

Fzd:

Frizzled family of receptors

GPCR:

G protein-coupled receptor

GSK-3β:

Glycogen synthase kinase-3β

HUVECs:

Human umbilical vein endothelial cells

IGF1–AKT–mTOR–SREBP1/2 signaling:

Insulin-like growth factor 1–protein kinase B–rapamycin–sterol regulatory element-binding protein 1/2 signaling

IGFBP-4:

Insulin-like growth factor-binding protein-4

JNK:

C-Jun N-terminal kinase

LDL-C:

Low-density lipoprotein cholesterol

LDLRAP1:

LDLR-adapter protein 1

LDLRs:

Low-density lipoprotein receptors

LRP:

Low-density lipoprotein receptor-related protein

mTORC1:

Rapamycin complex 1

mTORC2:

Rapamycin complex 2

Non-canonical Wnt/PCP:

Non-canonical Wnt/planar cell polarity

OFT:

Outflow tract

PPPSP motif:

Pro-Pro-Pro-Ser-Pro motif

P1427Q:

Distinctive cyclic structure of the proline’s side chain at P1427

R611C:

An arginine to cysteine mutation at residue 611

SNP:

Single-nucleotide polymorphism

Sp1:

Specificity protein 1

TCF-4:

T-cell factor 4

TCF7L2:

Transcription factor 7-like 2

TCF/LEF:

N-terminus of T-cell factor/lymphoid-enhancing factors

TG:

Triglyceride

VSD:

Ventricular septal defect

VSMCs:

Vascular smooth muscle cells

Wnt/STOP signaling:

Wnt/β-catenin-independent de-repression

Wnt/TOR signaling:

Wnt/mTOR pathway

References

  • Acebron SP, Niehrs C (2016) β-Catenin-independent roles of Wnt/LRP6 signaling. Trends Cell Biol 26:956–967

    Article  CAS  PubMed  Google Scholar 

  • Alfieri CM, Cheek J, Chakraborty S, Yutzey KE (2010) Wnt signaling in heart valve development and osteogenic gene induction. Dev Biol 338:127–135

    Article  CAS  PubMed  Google Scholar 

  • Alok A, Lei Z, Jagannathan NS et al (2017) Wnt proteins synergize to activate β-catenin signaling. J Cell Sci 130:1532–1544

    Article  CAS  PubMed  Google Scholar 

  • Alvarez ML, Khosroheidari M, Eddy E, Done SC (2015) MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis 242:595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction withLRP6/Arrow. Nat Cell Biol 3:683–686

    Article  CAS  PubMed  Google Scholar 

  • Barker N, Morin PJ, Clevers H (2000) The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 77:1–24

    CAS  PubMed  Google Scholar 

  • Bastakoty D, Saraswati S, Joshi P et al (2016) Temporary, systemic inhibition of the wnt/β-catenin pathway promotes regenerative cardiac repair following myocardial infarct. Cell Stem Cells Regen Med. https://doi.org/10.16966/2472-6990.111

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilic J, Huang YL, Davidson G et al (2007) Wnt induces LRP6 signalosomes and promotes dishevelled- dependent LRP6 phosphorylation. Science 316:1619–1622

    Article  CAS  PubMed  Google Scholar 

  • Bourhis E, Wang W, Tam C et al (2011) Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6. Structure 19:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Brown SD, Twells RC, Hey PJ et al (1998) Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem Biophys Res Commun 248:879–888

    Article  CAS  PubMed  Google Scholar 

  • Bryja V, Andersson ER, Schambony A et al (2009) The extracellular domain of Lrp5/6 inhibits non-canonical Wnt signaling in vivo. Mol Biol Cell 20:924–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Červenka I, Wolf J, Mašek J et al (2011) Mitogen-activated protein kinases promote WNT/beta-catenin signaling via phosphorylation of LRP6. Mol Cell Biol 31:179–189

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Li M, Ding Y et al (2009) Identification of zinc-finger BED domain-containing 3 (Zbed3) as a novel Axin-interacting protein that activates Wnt/beta-catenin signaling. J Biol Chem 284:6683–6689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Bubeck D, MacDonald BT et al (2011) Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling. Dev Cell 21:848–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Xu J, Ye Y et al (2014) Urotensin II inhibited the proliferation of cardiac side population cells in mice during pressure overload by JNK-LRP6 signalling. J Cell Mol Med 18:852–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhuang J, Singh S et al (2016) XAV939 inhibits intima formation by decreasing vascular smooth muscle cell proliferation and migration through blocking Wnt signaling. J Cardiovasc Pharmacol 68:414–424

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Li Y, Wang Y et al (2018) Cardiomyocyte-restricted low density lipoprotein receptor-related protein 6 (LRP6) deletion leads to lethal dilated cardiomyopathy partly through Drp1 signaling. Theranostics 8:627–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Biechele T, Wei Z et al (2011) Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nat Struct Mol Biol 18:1204–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng PW, Chen YY, Cheng WH et al (2015a) Wnt Signaling Regulates Blood Pressure by Downregulating a GSK-3β-Mediated Pathway to Enhance Insulin Signaling in the Central Nervous System. Diabetes 64:3413–3424

    Article  CAS  PubMed  Google Scholar 

  • Cheng SL, Ramachandran B, Behrmann A et al (2015b) Vascular smooth muscle LRP6 limits arteriosclerotic calcification in diabetic LDLR-/- mice by restraining non-canonical Wnt signals. Circ Res 117:142–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  • Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E (2008) LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3′s phosphorylation of beta-catenin. Proc Natl Acad Sci USA 105:8032–8037

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Niziolek PJ, MacDonald BT et al (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17:684–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson G, Wu W, Shen J et al (2005) Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438:867–872

    Article  CAS  PubMed  Google Scholar 

  • de Groot RE, Ganji RS, Bernatik O et al (2014) Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway. Sci Signal 7:26

    Article  CAS  Google Scholar 

  • Feng ZC, Donnelly L, Li J, Krishnamurthy M, Riopel M, Wang R (2012) Inhibition of Gsk3β activity improves β-cell function in c-KitWv/+ male mice. Lab Invest 92:543–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Ma K, Lu N, Xu Y, Hong T, Peng X (2015) Elevated LRP6 levels correlate with vascular endothelial growth factor in the vitreous of proliferative diabetic retinopathy. Mol Vis 21:665–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gay A, Towler DA (2017) Wnt signaling in cardiovascular disease: opportunities and challenges. Curr Opin Lipidol 28:387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentzel M, Schille C, Rauschenberger V, Schambony A (2015) Distinct functionality of dishevelled isoforms on Ca2+/calmodulin-dependent protein kinase 2 (CamKII) in Xenopus gastrulation. Mol Biol Cell 26:966–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Go GW (2015) Low-density lipoprotein receptor-related protein 6 (LRP6) is a novel nutritional therapeutic target for hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis. Nutrients 7:4453–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Go GW, Srivastava R, Hernandez-Ono A et al (2014) The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue. Cell Metab 19:209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel S, Chin EN, Fakhraldeen SA, Berry SM, Beebe DJ, Alexander CM (2012) Both LRP5 and LRP6 receptors are required to respond to physiological Wnt ligands in mammary epithelial cells and fibroblasts. J Biol Chem 287:16454–16466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulen MF, Bulek K, Xiao H et al (2012) Inactivation of the enzyme GSK3α by the kinase IKKi promotes AKT-mTOR signaling pathway that mediates interleukin-1-induced Th17 cell maintenance. Immunity 37:800–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Li Y, Ren YH et al (2016) Mutant LRP6 impairs endothelial cell functions associated with familial normolipidemic coronary artery disease. Int J Mol Sci 17:E1173

    Article  CAS  PubMed  Google Scholar 

  • Habas R, Dawid IB, He X (2003) Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev 17:295–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall IF, Climent-Salarich M, Quintavalle M et al (2019) Circ_Lrp6, a circular rna enriched in vascular smooth muscle cells, acts as a sponge regulating miRNA-145 function. Circ Res 124:498–510

    Article  CAS  PubMed  Google Scholar 

  • Hanlon CD, Andrew DJ (2015) Outside-in signaling–a brief review of GPCR signaling with a focus on the Drosophila GPCR family. J Cell Sci 128(19):3533–3542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houston DW, Wylie C (2002) Cloning and expression of Xenopus Lrp5 and Lrp6 genes. Mech Dev 117:337–342

    Article  CAS  PubMed  Google Scholar 

  • https://www.ncbi.nlm.nih.gov/projects/homology/maps/human/chr12/

  • Huang YL, Anvarian Z, Döderlein G, Acebron SP, Niehrs C (2015) Maternal Wnt/STOP signaling promotes cell division during early Xenopus embryogenesis. Proc Natl Acad Sci USA 112:5732–5737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P, Huang FZ, Liu HZ, Zhang TY, Yang MS, Sun CZ (2019) LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6. Metabolism 94:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hudson C, Kimura TE, Duggirala A, Sala-Newby GB, Newby AC, Bond M (2018) Dual role of CREB in the regulation of vsmc proliferation: mode of activation determines pro- or anti-mitogenic function. Sci Rep 8:4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang YJ, Son HJ, Ahn J, Jung CH, Ha T (2016) Coumestrol modulates Akt and Wnt/β-catenin signaling during the attenuation of adipogenesis. Food Funct 7:4984–4991

    Article  CAS  PubMed  Google Scholar 

  • Katanaev VL, Ponzielli R, Sémériva M, Tomlinson A, Trimeric G (2005) Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 120:111–122

    Article  CAS  PubMed  Google Scholar 

  • Katoh M, Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13:4042–4045

    Article  CAS  PubMed  Google Scholar 

  • Keramati AR, Singh R, Lin A et al (2011) Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6 R611C increases PDGF-dependent vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 108:1914–1918

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch C, Augustine RA, Steger J et al (2010) Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity. J Neurosci 30:16180–16187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemieux E, Cagnol S, Beaudry K, Carrier J, Rivard N (2015) Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene 34:4914–4927

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li C, Liang D et al (2016) LRP6 acts as a scaffold protein in cardiac gap junction assembly. Nat Commun 7:11775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Mani S, Davis NR, Sarrafzadegan N, Kavathas PB, Mani A (2008) Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance. Circ Res 103:1280–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PH, Chang YC, Jiang YD et al (2009) Genetic variants of TCF7L2 are associated with insulin resistance and related metabolic phenotypes in Taiwanese adolescents and Caucasian young adults. J Clin Endocrinol Metab 94:3258–3575

    Google Scholar 

  • Liu W, Singh R, Choi CS et al (2012) Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem 287:7213–7223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CC, Tsai CW, Deak F et al (2014) Deficiency in LRP6-mediated Wnt signaling contributes to synaptic abnormalities and amyloid pathology in Alzheimer’s disease. Neuron 84:63–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo R, Jeong SJ, Jin Z, Stroke N, Li S, Piano X (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci USA 108:12925–12930

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani A, Radhakrishnan J, Wang H et al (2007) LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315:1278–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao B, Wu W, Davidson G et al (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/beta- catenin signalling. Nature 417:664–667

    Article  CAS  PubMed  Google Scholar 

  • Mishra SK, Funair L, Cressley A, Gittes GK, Burns RC (2012) High-affinity Dkk1 receptor Kremen1 is internalized by clathrin-mediated endocytosis. PLoS ONE 7:e52190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols AS, Floyd DH, Bruinsma SP, Narzinski K, Baranski TJ (2013) Frizzled receptors signal through G proteins. Cell Signal 25:1468–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niehrs C, Acebron SP (2010) Wnt signaling: multivesicular bodies hold GSK3 captive. Cell 143:1044–1046

    Article  CAS  PubMed  Google Scholar 

  • Niehrs C, Shen J (2010) Regulation of Lrp6 phosphorylation. Cell Mol Life Sci 67:2551–2562

    Article  CAS  PubMed  Google Scholar 

  • Park HW, Kim YC, Yu B et al (2015) Alternative Wnt signaling activates YAP/TAZ. Cell 162:780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purvanov V, Koval A, Katanaev VL (2010) A direct and functional interaction between Go and Rab5 during G protein-coupled receptor signaling. Sci Signal 3:65

    Article  CAS  Google Scholar 

  • Rajamannan NM (2011) The role of Lrp5/6 in cardiac valve disease: experimental hypercholesterolemia in the ApoE-/-/Lrp5-/- mice. J Cell Biochem 112:2987–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarzani R, Salvi F, Bordicchia M et al (2011) Carotid artery atherosclerosis in hypertensive patients with a functional LDL receptor-related protein 6 gene variant. Nutr Metab Cardiovasc Dis 21:150–156

    Article  CAS  PubMed  Google Scholar 

  • Shen F, Cheng L, Douglas AE, Riobo NA, Manning DR (2013) Smoothened is a fully competent activator of the heterotrimeric G protein G(i). Mol Pharmacol 83:691–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique A, Yu B, Khan K et al (2018) Expression of the Frizzled receptors and their co-receptors in calcified human aortic valves. Can J Physiol Pharmacol 96:208–214

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Smith E, Fathzadeh M et al (2013) Rare nonconservative LRP6 mutations are associated with metabolic syndrome. Hum Mutat 34:1221–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885

    Article  CAS  PubMed  Google Scholar 

  • Song L, Li Y, Wang K, Zhou CJ (2010) Cardiac neural crest and outflow tract defects in Lrp6 mutant mice. Dev Dyn 239:200–210

    CAS  PubMed  Google Scholar 

  • Srivastava R, Zhang J, Go GW, Narayanan A, Nottoli TP, Mani A (2015) Impaired LRP6-TCF7L2 activity enhances smooth muscle cell plasticity and causes coronary artery disease. Cell Rep 13:746–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava R, Rolyan H, Xie Y et al (2019) TCF7L2 (transcription factor 7-like 2) regulation of GATA6 (GATA-binding protein 6)-dependent and -independent vascular smooth muscle cell plasticity and intimal hyperplasia. Arterioscler Thromb Vasc Biol 39:250–262

    Article  CAS  PubMed  Google Scholar 

  • Tahinci E, Thorne CA, Franklin JL et al (2007) Lrp6 is required for convergent extension during Xenopus gastrulation. Development 134:4095–4106

    Article  CAS  PubMed  Google Scholar 

  • Tamai K, Semenov M, Kato Y et al (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535

    Article  CAS  PubMed  Google Scholar 

  • Tan NY, Khachigian LM (2009) Sp1 phosphorylation and its regulation of gene transcription. Mol Cell Biol 29:2483–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towler DA (2017) Osteotropic’ Wnt/LRP signals: high-wire artists in a balancing act regulating aortic structure and function. Arterioscler Thromb Vasc Biol 37:392–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan M, Li J, Herbst K et al (2011) LRP6 mediates cAMP generation by G protein-coupled receptors through regulating the membrane targeting of Gα(s). Sci Signal 4:15

    Article  Google Scholar 

  • Wang X, Adhikari N, Li Q, Hall JL (2004) LDL receptor-related protein LRP6 regulates proliferation and survival through the Wnt cascade in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 287:H2376–H2383

    Article  CAS  PubMed  Google Scholar 

  • Wehrli M, Dougan ST, Caldwell K et al (2000) arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407:527–530

    Article  CAS  PubMed  Google Scholar 

  • Wo D, Peng J, Ren DN et al (2016) Opposing roles of Wnt inhibitors IGFBP-4 and Dkk1 in cardiac ischemia by differential targeting of LRP5/6 and β-catenin. Circulation 134:1991–2007

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Gong W, Peng J et al (2014) Functional analysis LRP6 novel mutations in patients with coronary artery disease. PLoS ONE 9:e84345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Lu B, Zamponi R et al (2018) mTORC1 signaling suppresses Wnt/β-catenin signaling through DVL-dependent regulation of Wnt receptor FZD level. Proc Natl Acad Sci USA 115:E10362–E10369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate those researchers in Key Laboratory of Arrhythmias of the Ministry of Education of China who provided important data in favor of our work. This work was supported in part by a Project of National Natural Science Foundation of China (81870247, to S. K.), Key Disciplines Group Construction Project of Pudong Health Bureau of Shanghai (Grant No. PWZxq 2017-05), and Top-level Clinical Discipline Project of Shanghai Pudong District (Grant No. PWYgf 2018-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S. Low-density lipoprotein receptor-related protein 6-mediated signaling pathways and associated cardiovascular diseases: diagnostic and therapeutic opportunities. Hum Genet 139, 447–459 (2020). https://doi.org/10.1007/s00439-020-02124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-020-02124-8

Navigation