Skip to main content

Advertisement

Log in

Meta-omics Provides Insights into the Impact of Hydrocarbon Contamination on Microbial Mat Functioning

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Photosynthetic microbial mats are stable, self-supported communities. Due to their coastal localization, these mats are frequently exposed to hydrocarbon contamination and are able to grow on it. To decipher how this contamination disturbs the functioning of microbial mats, we compared two mats: a contaminated mat exposed to chronic petroleum contamination and a reference mat. The taxonomic and metabolic structures of the mats in spring and fall were determined using metagenomic and metatranscriptomic approaches. Extremely high contamination disturbed the seasonal variations of the mat. ABC transporters, two-component systems, and type IV secretion system-related genes were overabundant in the contaminated mats. Xenobiotic degradation metabolism was minor in the metagenomes of both mats, and only the expression of genes involved in polycyclic aromatic hydrocarbon degradation was higher in the contaminated mat. Interestingly, the expression rates of genes involved in hydrocarbon activation decreased during the 1-year study period, concomitant with the decrease in easily degradable hydrocarbons, suggesting a transient effect of hydrocarbon contamination. Alteromonadales and Oceanospirillales hydrocarbonoclastic bacteria appeared to be key in hydrocarbon remediation in the contaminated mat. Overall, the contaminated microbial mat was able to cope with hydrocarbon contamination and displayed an adaptive functioning that modified seasonal behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allen MA, Goh F, Burns BP, Neilan BA (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 7:82–96. https://doi.org/10.1111/j.1472-4669.2008.00187.x

    Article  PubMed  CAS  Google Scholar 

  2. van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113:3–25

    Article  Google Scholar 

  3. Vincent WF (2002) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The Ecology of Cyanobacteria. Springer, Netherlands, pp 321–340

    Chapter  Google Scholar 

  4. Dillon JG, Miller S, Bebout B, Hullar M, Pinel N, Stahl DA (2009) Spatial and temporal variability in a stratified hypersaline microbial mat community. FEMS Microbiol Ecol 68:46–58. https://doi.org/10.1111/j.1574-6941.2009.00647.x

    Article  PubMed  CAS  Google Scholar 

  5. Harris JK, Caporaso JG, Walker JJ, Spear JR, Gold NJ, Robertson CE, Hugenholtz P, Goodrich J, McDonald D, Knights D, Marshall P, Tufo H, Knight R, Pace NR (2013) Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 7:50–60. https://doi.org/10.1038/ismej.2012.79

    Article  PubMed  CAS  Google Scholar 

  6. Schneider D, Arp G, Reimer A, Reitner J, Daniel R (2013) Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati Atoll, Central Pacific. PLoS One 8:e66662. https://doi.org/10.1371/journal.pone.0066662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Barth HJ (2003) The influence of cyanobacteria on oil polluted intertidal soils at the Saudi Arabian Gulf shores. Mar Pollut Bull 46:1245–1252. https://doi.org/10.1016/S0025-326X(03)00374-6

    Article  PubMed  CAS  Google Scholar 

  8. Paissé S, Coulon F, Goñi-Urriza M, Peperzak L, McGenity T, Duran R (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol Ecol 66:295–305. https://doi.org/10.1111/j.1574-6941.2008.00589.x

    Article  PubMed  CAS  Google Scholar 

  9. Bordenave S, Goñi-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73:6089–6097. https://doi.org/10.1128/AEM.01352-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Paissé S, Goñi-Urriza M, Stadler T et al (2012) Ring-hydroxylating dioxygenase (RHD) expression in a microbial community during the early response to oil pollution. FEMS Microbiol Ecol 80:77–86. https://doi.org/10.1111/j.1574-6941.2011.01270.x

    Article  PubMed  CAS  Google Scholar 

  11. Abed RMM, Safi NMD, Köster J, de Beer D, el-Nahhal Y, Rullkötter J, Garcia-Pichel F (2002) Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl Environ Microbiol 68:1674–1683. https://doi.org/10.1128/AEM.68.4.1674-1683.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Paisse S, Goni-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60:394–405. https://doi.org/10.1007/s00248-010-9721-7

    Article  PubMed  Google Scholar 

  13. Abed RMM, Al-Kharusi S, Prigent S, Headley T (2014) Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial mats from a constructed wetland. PLoS One 9:e114570. https://doi.org/10.1371/journal.pone.0114570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Paisse S, Duran R, Coulon F, Goñi-Urriza M (2011) Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments? Appl Microbiol Biotechnol 92:835–844. https://doi.org/10.1007/s00253-011-3381-5

    Article  PubMed  CAS  Google Scholar 

  15. Lu Z, Deng Y, Van Nostrand JD et al (2012) Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J 6:451–460. https://doi.org/10.1038/ismej.2011.91

    Article  PubMed  CAS  Google Scholar 

  16. Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HY, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. Isme J 6:1715–1727. https://doi.org/10.1038/ismej.2012.59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rivers AR, Sharma S, Tringe SG, Martin J, Joye SB, Moran MA (2013) Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME J 7:2315–2329. https://doi.org/10.1038/ismej.2013.129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. de Menezes A, Clipson N, Doyle E (2012) Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environ Microbiol 14:2577–2588. https://doi.org/10.1111/j.1462-2920.2012.02781.x

    Article  PubMed  CAS  Google Scholar 

  19. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK (2014) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8:1464–1475. https://doi.org/10.1038/ismej.2013.254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Aubé J, Senin P, Pringault O, Bonin P, Deflandre B, Bouchez O, Bru N, Biritxinaga-Etchart E, Klopp C, Guyoneaud R, Goñi-Urriza M (2016) The impact of long-term hydrocarbon exposure on the structure, activity, and biogeochemical functioning of microbial mats. Mar Pollut Bull 111:115–125. https://doi.org/10.1016/j.marpolbul.2016.07.023

    Article  PubMed  CAS  Google Scholar 

  21. Pringault O, Aube J, Bouchez O et al (2015) Contrasted effects of natural complex mixtures of PAHs and metals on oxygen cycle in a microbial mat. Chemosphere 135:189–201. https://doi.org/10.1016/j.chemosphere.2015.04.037

    Article  PubMed  CAS  Google Scholar 

  22. Beau-Monvoisin N (2009) Déversement accidentel d’hydrocarbures, sur l’étang de Berre suite à un débordement des bassins d’orage de la Compagnie Pétrochimique de Berre (CPB). Brest : Cedre (Centre de documentation de recherche et d’expérimentations sur les pollutions accidentelles des eaux)

  23. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  24. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  CAS  Google Scholar 

  25. Frith MC, Hamada M, Horton P (2010) Parameters for accurate genome alignment. BMC Bioinformatics 11:80. https://doi.org/10.1186/1471-2105-11-80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185. https://doi.org/10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  27. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811–814. https://doi.org/10.1038/nmeth.2066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Stewart FJ, Ulloa O, DeLong EF (2012) Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ Microbiol 14:23–40. https://doi.org/10.1111/j.1462-2920.2010.02400.x

    Article  PubMed  CAS  Google Scholar 

  30. Lê S, Rennes A, Josse J et al (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw:1–18

  31. Bolhuis H, Stal LJ (2011) Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. Isme J 5:1701–1712. https://doi.org/10.1038/Ismej.2011.52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Severin I, Acinas SG, Stal LJ (2010) Diversity of nitrogen-fixing bacteria in cyanobacterial mats. FEMS Microbiol Ecol 73:514–525. https://doi.org/10.1111/j.1574-6941.2010.00925.x

    Article  PubMed  CAS  Google Scholar 

  33. Robertson CE, Spear JR, Harris JK, Pace NR (2009) Diversity and stratification of archaea in a hypersaline microbial mat. Appl Environ Microbiol 75:1801–1810. https://doi.org/10.1128/AEM.01811-08

    Article  PubMed  CAS  Google Scholar 

  34. Mobberley JM, Khodadad CLM, Visscher PT, Reid RP, Hagan P, Foster JS (2015) Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling. Sci Rep 5:12601. https://doi.org/10.1038/srep12601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wieland A, Zopfi J, Benthien M, Kühl M (2005) Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Microb Ecol 49:34–49. https://doi.org/10.1007/s00248-003-2033-4

    Article  PubMed  CAS  Google Scholar 

  36. Pinckney J, Paerl HW, Fitzpatrick M (1996) Impacts of seasonality and nutrients on microbial mat community structure and function. Oceanogr Lit Rev 3:283

    Google Scholar 

  37. Lamendella R, Strutt S, Borglin SE, Chakraborty R, Tas N, Mason OU, Hultman J, Prestat E, Hazen TC, Jansson JK (2014) Assessment of the Deepwater Horizon oil spill impact on gulf coast microbial communities. Aquat Microbiol 5:130. https://doi.org/10.3389/fmicb.2014.00130

    Article  Google Scholar 

  38. Atlas RM, Stoeckel DM, Faith SA, Minard-Smith A, Thorn JR, Benotti MJ (2015) Oil biodegradation and oil-degrading microbial populations in marsh sediments impacted by oil from the Deepwater Horizon well blowout. Environ Sci Technol 49:8356–8366. https://doi.org/10.1021/acs.est.5b00413

    Article  PubMed  CAS  Google Scholar 

  39. Nogales B, Lanfranconi MP, Piña-Villalonga JM, Bosch R (2011) Anthropogenic perturbations in marine microbial communities. FEMS Microbiol Rev 35:275–298. https://doi.org/10.1111/j.1574-6976.2010.00248.x

    Article  PubMed  CAS  Google Scholar 

  40. Cappello S, Caruso G, Zampino D, Monticelli LS, Maimone G, Denaro R, Tripodo B, Troussellier M, Yakimov M, Giuliano L (2007) Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study. J Appl Microbiol 102:184–194. https://doi.org/10.1111/j.1365-2672.2006.03071.x

    Article  PubMed  CAS  Google Scholar 

  41. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974. https://doi.org/10.1128/AEM.05402-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Held NA, McIlvin MR, Moran DM et al (2019) Unique patterns and biogeochemical relevance of two-component sensing in marine bacteria. mSystems 4:e00317–e00318. https://doi.org/10.1128/mSystems.00317-18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Xu W, You Y, Wang Z, Chen W, Zeng J, Zhao X, Su Y (2018) Dibutyl phthalate alters the metabolic pathways of microbes in black soils. Sci Rep 8:2605. https://doi.org/10.1038/s41598-018-21030-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.VMBF-0012-2015

  45. Waksman G (2019) From conjugation to T4S systems in gram-negative bacteria: a mechanistic biology perspective. EMBO Rep 20:e47012. https://doi.org/10.15252/embr.201847012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89:339–348. https://doi.org/10.1046/j.1365-2672.2000.01121.x

    Article  PubMed  CAS  Google Scholar 

  47. Van Beilen JB, Li Z, Duetz WA et al (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440. https://doi.org/10.2516/ogst:2003026

    Article  Google Scholar 

  48. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21. https://doi.org/10.1007/s00253-006-0748-0

    Article  PubMed  CAS  Google Scholar 

  49. Smith CB, Tolar BB, Hollibaugh JT, King GM (2013) Alkane hydroxylase gene (alkB) phylotype composition and diversity in northern Gulf of Mexico bacterioplankton. Front Microbiol 4. https://doi.org/10.3389/fmicb.2013.00370

  50. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276. https://doi.org/10.1016/S0958-1669(00)00209-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors received support with linguistic proofreading from a professional proofreading service.

Funding

This work was supported by the French National Research Agency (ANR FUNHYMAT ANR11 BSV7 014 01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisol Goñi-Urriza.

Electronic Supplementary Material

ESM 1

(DOCX 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubé, J., Senin, P., Bonin, P. et al. Meta-omics Provides Insights into the Impact of Hydrocarbon Contamination on Microbial Mat Functioning. Microb Ecol 80, 286–295 (2020). https://doi.org/10.1007/s00248-020-01493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01493-x

Keywords

Navigation