Skip to main content
Log in

Quantification of denitrifier genes population size and its relationship with environmental factors

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The objectives of this study were to use real-time PCR for culture-independent quantification of the copy numbers of 16S rRNA and denitrification functional genes, and also the relationships between gene copy numbers and soil physicochemical properties. In this study, qPCR analysis of the soil samples showed 16S rRNA, nirS, nirK, nosZI and nosZII average densities of 3.0 × 108, 2.25 × 107, 2.9 × 105, 4.0 × 106 and 1.75 × 107 copies per gram of dry soil, respectively. In addition, the abundances of (nirS + nirK), nosZI and nosZII relative to 16S rRNA genes were 1.4–34.1%, 0.06–3.95% and 1.3–39%, respectively, confirming the low proportion of denitrifiers to total bacteria in soil. This showed that the non-denitrifying nosZII-type bacteria may contribute significantly to N2O consumption in the soil. Furthermore, the shifts in abundance and diversity of the total bacteria and denitrification functional gene copy numbers correlated significantly with the various soil factors. It is the first study in Turkey about the population size of denitrification functional genes in different soil samples. It also aims to draw attention to nitrous oxide-associated global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arfken A, Song B, Bowman JS, Piehler M (2017) Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach. PLoS ONE 12(9):e0185071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avşar C (2018) Quantification of denitrifier population size in soil, bacteria community structures and comparison of nosZ and 16S rRNA genes from culturable denitrifying. In: PhD Thesis, Ankara University, Ankara, Turkey, p 188

  • Avşar C, Aras ES (2019) Community structures and comparison of nosZ and 16S rRNA genes from culturable denitrifying bacteria. Folia Microbiol 2019:1–14

    Google Scholar 

  • Azziz G, Monza J, Etchebehere C, Irisarri P (2017) nirS-and nirK-type denitrifier communities are differentially affected by soil type, rice cultivar and water management. Eur J Soil Biol 78:20–28

    Article  CAS  Google Scholar 

  • Bergaust L, Mao Y, Bakken LR, Frostegård Å (2010) Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in Paracoccus denitrificans. Appl Environ Microbiol 76:6387–6396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian R, Sun Y, Li W, Ma Q, Chai X (2017) Co-composting of municipal solid waste mixed with matured sewage sludge: the relationship between N2O emissions and denitrifying gene abundance. Chemosphere 189:581–589

    Article  CAS  PubMed  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem Cycles 16:1–13

    Article  Google Scholar 

  • Braker G, Fesefeldt A, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braker G, Zhou J, Wu L, Devol AH, Tiedje JM (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl Environ Microbiol 66(5):2096–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bru D, Ramette A, Saby NPA, Dequiedt S, Ranjard L, Jolivet C, Arouays D, Philippot L (2011) Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J 5(3):532–542

    Article  CAS  PubMed  Google Scholar 

  • Castellano-Hinojosa A, Correa-Galeote D, Carrillo P, Bedmar EJ, Medina-Sánchez JM (2017) Denitrification and biodiversity of denitrifiers in a high-mountain mediterranean lake. Front Microbiol 8:1911

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Liu J, Wu M, Xie X, Wu J, Wei W (2012) Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microb Ecol 63(2):446–459

    Article  PubMed  Google Scholar 

  • Chen C, Ouyang W, Huang S, Peng X (2018) Microbial community composition in a simultaneous nitrification and denitrification bioreactor for domestic wastewater treatment. Earth Env Sci 112(1):012007

    Google Scholar 

  • Chronakova A, Radl V, Čuhel J, Šimek M, Elhottova D, Engel M, Schloter M (2009) Overwintering management on upland pasture causes shifts in an abundance of denitrifying microbial communities, their activity and N2O-reducing ability. Soil Biol Biochem 41(6):1132–1138

    Article  CAS  Google Scholar 

  • Clark IM, Buchkina N, Jhurreea D, Goulding KW, Hirsch PR (2012) Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the broadbalk wheat experiment. Philos Trans R Soc B 367(1593):1235–1244

    Article  CAS  Google Scholar 

  • Correa-Galeote D, Tortosa G, Moreno S, Bru D, Philippot L, Bedmar EJ (2017) Spatio-temporal variations in the abundance and structure of denitrifier communities in sediments differing in nitrate content. Curr Issues Mol Biol 24:71–102

    Article  PubMed  Google Scholar 

  • Dandie CE, Wertz S, Leclair CL, Goyer C, Burton DL, Patten CL, Zebarth BJ, Trevors JT (2011) Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiol Ecol 77(1):69–82

    Article  CAS  PubMed  Google Scholar 

  • Deslippe JR, Jamali H, Jha N, Saggar S (2014) Denitrifier community size, structure and activity along a gradient of pasture to riparian soils. Soil Biol Biochem 71:48–60

    Article  CAS  Google Scholar 

  • Domeignoz-Horta L, Spor A, Bru D, Bizouard F, Leonard J, Philippot L (2015) The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system. Front Microbiol 6:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Domeignoz-Horta LA, Philippot L, Peyrard C, Bru D, Breuil MC, Bizouard F, Spor A (2017) Peaks of in situ N2O emissions are influenced by N2O producing and reducing microbial communities across arable soils. Glob Change Biol 24:360–370

    Article  Google Scholar 

  • Enwall K, Throback IN, Stenberg M, Soderstrom M, Hallin S (2010) Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl Environ Microbiol 76:2243–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaimster H, Alston M, Richardson D, Gates A, Rowley G (2017) Transcriptional and environmental control of bacterial denitrification and N2O emissions. FEMS Microbiol Lett 2017:fnx277

    Google Scholar 

  • García-Lledó A, Vilar-Sanz A, Trias R, Hallin S, Bañeras L (2011) Genetic potential for N2O emissions from the sediment of a free water surface constructed wetland. Water Res 45(17):5621–5632

    Article  PubMed  CAS  Google Scholar 

  • Graf DRH, Jones CM, Hallin S (2014) Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS ONE 9:e114118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graf DR, Zhao M, Jones CM, Hallin S (2016) Soil type overrides plant effect on genetic and enzymatic N2O production potential in arable soils. Soil Biol Biochem 100:125–128

    Article  CAS  Google Scholar 

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3(5):597

    Article  CAS  PubMed  Google Scholar 

  • Henderson SL, Dandie CE, Patten CL, Zebarth BJ, Burton DL, Trevors JT, Goyer C (2010) Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues. Appl Environ Microbiol 76(7):2155–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry S, Baudoin E, Lopez-Gutierrez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59:327–335

    Article  CAS  PubMed  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soilsi. Appl Envir Microbiol 72:5181–5189

    Article  CAS  Google Scholar 

  • Herbert RB Jr, Winbjörk H, Hellman M, Hallin S (2014) Nitrogen removal and spatial distribution of denitrifier and anammox communities in a bioreactor for mine drainage treatment. Water Res 66:350–360

    Article  CAS  PubMed  Google Scholar 

  • Hernández-del Amo E, Menció A, Gich F, Mas-Pla J, Bañeras L (2018) Isotope and microbiome data provide complementary information to identify natural nitrate attenuation processes in groundwater. Sci Total Environ 613:579–591

    Article  PubMed  CAS  Google Scholar 

  • Hester ER, Harpenslager SF, van Diggelen JM, Lamers LL, Jetten MS, Luke C, Welte CU (2018) Linking nitrogen load to the structure and function of wetland soil and rhizosphere microbial communities. mSystems 3(1):e00214-17

  • Heylen K, Gevers D, Vanparys B, Wittebolle L, Geets J, Boon N (2006) The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Environ Microbiol 8:2012–2021

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Ashida N, Otsuka S, Senoo K (2011) Isolation of oligotrophic denitrifiers carrying previously uncharacterized functional gene sequences. Appl Environ Microbiol 77(1):338–342

    Article  CAS  PubMed  Google Scholar 

  • Jha N, Deslippe J, Saggar S, Tillman R, Giltrap D (2013) Measuring bacterial denitrifier genes distribution and abundance in New Zealand dairy-grazed pasture soils. Accurate and efficient use of nutrients on farms. Occas Rep 26:1–24

    Google Scholar 

  • Jones CM, Stres B, Rosenquist M, Hallin S (2008) Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol 25:1955–1966

    Article  CAS  PubMed  Google Scholar 

  • Jones CM, Graf DRH, Bru D, Philippot L, Hallin S (2013) The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J 7:417–426

    Article  CAS  PubMed  Google Scholar 

  • Jones CM, Spor A, Brennan FP, Breuil MC, Bru D, Lemanceau P (2014) Recently identified microbial guild mediates soil N2O sink capacity. Nature Clim Change 4:801–805

    Article  CAS  Google Scholar 

  • Juhanson J, Hallin S, Söderström M, Stenberg M, Jones CM (2017) Spatial and phyloecological analyses of nosZ genes underscore niche differentiation amongst terrestrial N2O reducing communities. Soil Biol Biochem 115:82–91

    Article  CAS  Google Scholar 

  • Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L (2006) Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of glacier foreland. Appl Environ Microbiol 72:5957–5962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaurin A, Mihelič R, Kastelec D, Grčman H, Bru D, Philippot L, Suhadolc M (2018) Resilience of bacteria, archaea, fungi and N-cycling microbial guilds under plough and conservation tillage, to agricultural drought. Soil Biol Biochem 120:233–245

    Article  CAS  Google Scholar 

  • Krause HM, Thonar C, Eschenbach W, Well R, Mäder P, Behrens S, Gattinger A (2017) Long term farming systems affect soils potential for N2O production and reduction processes under denitrifying conditions. Soil Biol Biochem 114:31–41

    Article  CAS  Google Scholar 

  • Lee C, Kim J, Shin SG, Hwang S (2006) Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol 123(3):273–280

    Article  CAS  PubMed  Google Scholar 

  • Levy-Booth DJ, Winder RS (2010) Quantification of nitrogen reductase and nitrite reductase genes in soil of thinned and clear-cut Douglas-fir stands by using real-time PCR. Appl Environ Microbiol 76(21):7116–7125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Li M, Shi W, Li H, Sun Z, Gao Z (2017) Distinct distribution patterns of proteobacterial nirK-and nirS-type denitrifiers in the Yellow River estuary, China. Can J Microbiol 63(8):708–718

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Mørkved PT, Frostegård Å, Bakken LR (2010) Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol Ecol 72:407–417

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li C, Jing J, Zhao P, Luo Z, Cao M, Chai B (2018) Ecological patterns and adaptability of bacterial communities in alkaline copper mine drainage. Water Res 133:99–109

    Article  CAS  PubMed  Google Scholar 

  • Meiri H, Altman A (1998) Agriculture and agricultural biotechnology: development trends toward the 21st century. In: Altam A (ed) Agricultural biotechnology. Marcel Dekker Inc., New York, pp 1–17 (ISBN: 0-8247-9439-7)

  • Orellana LH, Rodriguez-R LM, Konstantinidis KT (2017) ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Res 45(3):e14

    PubMed  Google Scholar 

  • Palmer K, Biasi C, Horn MA (2012) Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J 6:1058–1077

    Article  CAS  PubMed  Google Scholar 

  • Perotti EBR, Pidello A (2012) Plant-soil-microorganism interactions on nitrogen cycle: azospirillum inoculation, advances in selected plant physiology aspects, Dr. Giuseppe Montanaro (Ed.) (ISBN: 978-953-51-0557-2)

  • Philippot L, Hallin S, Schloter M (2007) Ecology of denitrifying prokaryotes in agricultural soil. Adv Agronomy 96:249–305

    Article  CAS  Google Scholar 

  • Philippot L, Cuhei J, Saby NPA, Cheneby D, Chronakova A, Bru D, Arrouays D, Martin-Laurent F, Simek M (2009) Mapping field-scale spatial patterns of size and activity of the denitrifier community. Environ Microbiol 11(6):1518–1526

    Article  PubMed  Google Scholar 

  • Rasmussen R (2001) Quantification on the LightCycler. In: Rapid cycle real-time PCR. Springer, Berlin, Heidelberg, pp 21–34

  • Richardson D, Felgate H, Watmough N, Thomson A, Baggs E (2009) Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle could enzymic regulation hold the key. Trends Biotechnol 27:388–397

    Article  CAS  PubMed  Google Scholar 

  • Saarenheimo J, Tiirola MA, Rissanen AJ (2015) Functional gene pyrosequencing reveals core proteobacterial denitrifiers in boreal lakes. Front Microbiol 6:674

    Article  PubMed  PubMed Central  Google Scholar 

  • Samad MS (2017) N cycling and microbial dynamics in pasture soils. In: Doctoral Thesis, Institue of Science, University of Otago, p 170, New Zealand

  • Samad MS, Biswas A, Bakken LR, Clough TJ, De Klein CA, Richards KG, Morales SE (2016) Phylogenetic and functional potential links pH and N2O emissions in pasture soils. Sci Rep 6:35990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-García C, Nissen S (2012) Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci 109(48):19709–19714

    Article  CAS  PubMed  Google Scholar 

  • Shcherbak I, Millar N, Robertson GP (2014) Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. PNAS 111(25):9199–9204

    Article  CAS  PubMed  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791

    Article  Google Scholar 

  • Su C, Lei L, Duan Y, Zhang K (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Article  CAS  PubMed  Google Scholar 

  • Tsiknia M, Paranychianakis NV, Varouchakis EA, Nikolaidis NP (2015) Environmental drivers of the distribution of nitrogen functional genes at a watershed scale. FEMS Microbiol Ecol 91(6):1–11

    Article  CAS  Google Scholar 

  • Veraart AJ, Dimitrov MR, Schrier-Uijl AP, Smidt H, de Klein JJ (2017) Abundance, activity and community structure of denitrifiers in drainage ditches in relation to sediment characteristics, vegetation and land-use. Ecosystems 20(5):928–943

    Article  CAS  Google Scholar 

  • Wei W, Isobe K, Nishizawa T, Zhu L, Shiratori Y, Ohte N, Senoo K (2015) Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME J 9:1954–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L (2010) Denitrification and molecular detection in riparian buffer soil. In: Master Thesis, North Corolina State University, Institute of Science, pp 122, North Corolina, USA

  • Wu L, Osmond DL, Graves AK, Burchell MR, Duckworth OW (2012) Relationships between nitrogen transformation rates and gene abundance in a riparian buffer soil. Environ Manage 50(5):861–874

    Article  PubMed  Google Scholar 

  • Wyman M, Hodgson S, Bird C (2013) Denitrifying Alphaproteobacteria from the Arabian Sea that express nosZ, the gene encoding nitrous oxide reductase, in oxic and suboxic waters. Appl Environ Microbiol 79(8):2670–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Yang J, Liu L (2014) Denitrifier community in the oxygen minimum zone of a subtropical deep reservoir. PLoS ONE 9(3):e92055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, He L, Zhang F, Sun W, Li Z (2013) The Different potential of sponge bacterial symbionts in N2 release indicated by the phylogenetic diversity and abundance analyses of denitrification genes, nirK and nosZ. PLoS ONE 8(6):e65142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Hou L, Liu M, Gao J, Yin G, Li X, Zong H (2015) Diversity, abundance, and distribution of nirS-harboring denitrifiers in intertidal sediments of the Yangtze Estuary. Microb Ecol 70(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61(4):533–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Ankara University Scientific Research Project Coordination Unit. Project number: 17L0430004, 2017–2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cumhur Avşar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Jorge Membrillo-Hernández.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 860 kb)

Supplementary file2 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avşar, C., Aras, E.S. Quantification of denitrifier genes population size and its relationship with environmental factors. Arch Microbiol 202, 1181–1192 (2020). https://doi.org/10.1007/s00203-020-01826-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01826-x

Keywords

Navigation