Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Amino Acids Regulate Glycolipid Metabolism and Alter Intestinal Microbial Composition

Author(s): Fei Xie, Zhengqun Liu, Ming Liu, Liang Chen, Wei Ding* and Hongfu Zhang*

Volume 21, Issue 8, 2020

Page: [761 - 765] Pages: 5

DOI: 10.2174/1389203721666200219100216

Price: $65

Abstract

Amino acids (AAs) and their metabolites regulate key metabolic pathways that are necessary for growth, reproduction, immunity and metabolism of the body. It has been convinced that metabolic diseases are closely related to disorders of glycolipid metabolism. A growing number of studies have shown that AAs are closely related to energy metabolism. This review focuses on the effects of amino acids (arginine, branched-chain amino acids, glutamine) and their metabolites (short chain fatty acids) on glycolipid metabolism by regulating PI3K/AKT/mTOR and AMPK signaling pathways and GPCRs receptors, reducing intestinal Firmicutes/Bacteroidetes ratio associated with obesity.

Keywords: Glycolipid metabolism, amino acids (AAs), short chain fatty acids (SCFAs), intestinal microbial composition, metabolic pathways, metabolites.

Graphical Abstract
[1]
Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Curr. Protein Pept. Sci., 2015, 16(7), 646-654.
[http://dx.doi.org/10.2174/1389203716666150630133657] [PMID: 26122784]
[2]
Ma, X.; Han, M.; Li, D.; Hu, S.; Gilbreath, K.R.; Bazer, F.W.; Wu, G. L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids, 2017, 49(5), 957-964.
[http://dx.doi.org/10.1007/s00726-017-2399-0] [PMID: 28260165]
[3]
Hu, S.; Han, M.; Rezaei, A.; Li, D.; Wu, G.; Ma, X. L-Arginine modulates glucose and lipid metabolism in obesity and diabetes. Curr. Protein Pept. Sci., 2017, 18(6), 599-608.
[http://dx.doi.org/10.2174/1389203717666160627074017] [PMID: 27356939]
[4]
Ma, N.; Ma, X. Dietary amino acids and the gut-microbioe-immune axis: Physiological metabolism and therapeutic prospects. Compr. Rev. Food Sci. Food Saf., 2019, 18, 221-242.
[http://dx.doi.org/10.1111/1541-4337.12401]
[5]
Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched chain amino acids: Beyond nutrition metabolism. Int. J. Mol. Sci., 2018, 19(4)E954
[http://dx.doi.org/10.3390/ijms19040954] [PMID: 29570613]
[6]
Guo, P.; Li, Y.; Eslamfam, S.; Ding, W.; Ma, X. Discovery of Novel Genes Mediating Glucose and Lipid Metabolisms. Curr. Protein Pept. Sci., 2017, 18(6), 609-618.
[http://dx.doi.org/10.2174/1389203717666160627084304] [PMID: 27356932]
[7]
Ma, X. Editorial: Signal proteins involved in glucose and lipid metabolism regulation. Curr. Protein Pept. Sci., 2017, 18(6), 524.
[http://dx.doi.org/10.2174/138920371806170418222704] [PMID: 29336244]
[8]
Elhenawy, W.; Oberc, A.; Coombes, B.K. A polymicrobial view of disease potential in Crohn’s-associated adherent-invasive E. coli. Gut Microbes, 2018, 9(2), 166-174.
[http://dx.doi.org/10.1080/19490976.2017.1378291] [PMID: 28914579]
[9]
Kiely, C.J.; Pavli, P.; O’Brien, C.L. The role of inflammation in temporal shifts in the inflammatory bowel disease mucosal microbiome. Gut Microbes, 2018, 9(6), 477-485.
[http://dx.doi.org/10.1080/19490976.2018.1448742] [PMID: 29543557]
[10]
Sokol, H.; Jegou, S.; McQuitty, C.; Straub, M.; Leducq, V.; Landman, C.; Kirchgesner, J.; Le Gall, G.; Bourrier, A.; Nion-Larmurier, I.; Cosnes, J.; Seksik, P.; Richard, M.L.; Beaugerie, L. Specificities of the intestinal microbiota in patients with inflammatory bowel disease and Clostridium difficile infection. Gut Microbes, 2018, 9(1), 55-60.
[http://dx.doi.org/10.1080/19490976.2017.1361092] [PMID: 28786749]
[11]
Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep., 2017, 7, 43412.
[http://dx.doi.org/10.1038/srep43412] [PMID: 28252026]
[12]
Yada, R.Y. Proteins in food processing. Int. J. Food Sci. Technol., 2010, 39, 1006-1007.
[13]
Shimizu, M.; Son, D.O. Food-derived peptides and intestinal functions. Curr. Pharm. Des., 2007, 13(9), 885-895.
[http://dx.doi.org/10.2174/138161207780414287] [PMID: 17430188]
[14]
Bos, C.; Juillet, B.; Fouillet, H.; Turlan, L.; Daré, S.; Luengo, C.; N’tounda, R.; Benamouzig, R.; Gausserès, N.; Tomé, D.; Gaudichon, C. Postprandial metabolic utilization of wheat protein in humans. Am. J. Clin. Nutr., 2005, 81(1), 87-94.
[http://dx.doi.org/10.1093/ajcn/81.1.87] [PMID: 15640465]
[15]
Blachier, F.; Mariotti, F.; Huneau, J.F.; Tomé, D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids, 2007, 33(4), 547-562.
[http://dx.doi.org/10.1007/s00726-006-0477-9] [PMID: 17146590]
[16]
Davila, A.M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.H.; Sanz, Y.; Tomé, D. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacol. Res., 2013, 68(1), 95-107.
[http://dx.doi.org/10.1016/j.phrs.2012.11.005] [PMID: 23183532]
[17]
Pieper, R.; Boudry, C.; Bindelle, J.; Vahjen, W.; Zentek, J. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets. Arch. Anim. Nutr., 2014, 68(4), 263-280.
[http://dx.doi.org/10.1080/1745039X.2014.932962] [PMID: 24979393]
[18]
Ma, X.; Sun, P.; He, P.; Han, P.; Wang, J.; Qiao, S.; Li, D. Development of monoclonal antibodies and a competitive ELISA detection method for glycinin, an allergen in soybean. Food Chem., 2010, 121, 546-551.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.045]
[19]
Nyangale, E.P.; Mottram, D.S.; Gibson, G.R. Gut microbial activity, implications for health and disease: The potential role of metabolite analysis. J. Proteome Res., 2012, 11(12), 5573-5585.
[http://dx.doi.org/10.1021/pr300637d] [PMID: 23116228]
[20]
He, L.; Eslamfam, S.; Ma, X.L.D. Autophagy and the nutritional signaling pathway. Front. Agr. Sci. Eng, 2016, 3, 222-230.
[http://dx.doi.org/10.15302/J-FASE-2016106]
[21]
Tremblay, F.; Brûlé, S.; Hee Um, S.; Li, Y.; Masuda, K.; Roden, M.; Sun, X.J.; Krebs, M.; Polakiewicz, R.D.; Thomas, G.; Marette, A. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc. Natl. Acad. Sci. USA, 2007, 104(35), 14056-14061.
[http://dx.doi.org/10.1073/pnas.0706517104] [PMID: 17709744]
[22]
Wang, C.; Guo, F. Branched chain amino acids and metabolic regulation. Chin. Sci. Bull., 2013, 58, 1228-1235.
[http://dx.doi.org/10.1007/s11434-013-5681-x]
[23]
Chen, Q.; Reimer, R.A. Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition, 2009, 25(3), 340-349.
[http://dx.doi.org/10.1016/j.nut.2008.08.012] [PMID: 19036562]
[24]
Chantranupong, L.; Scaria, S.M.; Saxton, R.A.; Gygi, M.P.; Shen, K.; Wyant, G.A.; Wang, T.; Harper, J.W.; Gygi, S.P.; Sabatini, D.M. The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell, 2016, 165(1), 153-164.
[http://dx.doi.org/10.1016/j.cell.2016.02.035] [PMID: 26972053]
[25]
He, T.; He, L.; Gao, E.; Hu, J.; Zang, J.; Wang, C.; Zhao, J.; Ma, X. Fat deposition deficiency is critical for the high mortality of pre-weanling newborn piglets. J. Anim. Sci. Biotechnol., 2018, 9, 66.
[http://dx.doi.org/10.1186/s40104-018-0280-y] [PMID: 30155244]
[26]
Valcheva, R.; Koleva, P.; Martínez, I.; Walter, J.; Gänzle, M.G.; Dieleman, L.A. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes, 2019, 10(3), 334-357.
[http://dx.doi.org/10.1080/19490976.2018.1526583] [PMID: 30395776]
[27]
Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes, 2012, 61(2), 364-371.
[http://dx.doi.org/10.2337/db11-1019] [PMID: 22190648]
[28]
Zaibi, M.S.; Stocker, C.J.; O’Dowd, J.; Davies, A.; Bellahcene, M.; Cawthorne, M.A.; Brown, A.J.H.; Smith, D.M.; Arch, J.R.S. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett., 2010, 584(11), 2381-2386.
[http://dx.doi.org/10.1016/j.febslet.2010.04.027] [PMID: 20399779]
[29]
Liu, T.; Li, J.; Liu, Y.; Xiao, N.; Suo, H.; Xie, K.; Yang, C.; Wu, C. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation, 2012, 35(5), 1676-1684.
[http://dx.doi.org/10.1007/s10753-012-9484-z] [PMID: 22669487]
[30]
Gomes, A.C.; Hoffmann, C.; Mota, J.F. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 2018, 9(4), 308-325.
[http://dx.doi.org/10.1080/19490976.2018.1465157] [PMID: 29667480]
[31]
Gomez-Arango, L.F.; Barrett, H.L.; Wilkinson, S.A.; Callaway, L.K.; McIntyre, H.D.; Morrison, M.; Dekker Nitert, M. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes, 2018, 9(3), 189-201.
[http://dx.doi.org/10.1080/19490976.2017.1406584] [PMID: 29144833]
[32]
Le Roy, C.I.; Beaumont, M.; Jackson, M.A.; Steves, C.J.; Spector, T.D.; Bell, J.T. Heritable components of the human fecal microbiome are associated with visceral fat. Gut Microbes, 2018, 9(1), 61-67.
[http://dx.doi.org/10.1080/19490976.2017.1356556] [PMID: 28767316]
[33]
Lee, H.; Lee, Y.; Kim, J.; An, J.; Lee, S.; Kong, H.; Song, Y.; Lee, C.K.; Kim, K. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes, 2018, 9(2), 155-165.
[http://dx.doi.org/10.1080/19490976.2017.1405209] [PMID: 29157127]
[34]
Solano-Aguilar, G.; Shea-Donohue, T.; Madden, K.B.; Quinoñes, A.; Beshah, E.; Lakshman, S.; Xie, Y.; Dawson, H.; Urban, J.F. Bifidobacterium animalis subspecies lactis modulates the local immune response and glucose uptake in the small intestine of juvenile pigs infected with the parasitic nematode Ascaris suum. Gut Microbes, 2018, 9(5), 422-436.
[http://dx.doi.org/10.1080/19490976.2018.1460014] [PMID: 30024817]
[35]
Musso, G.; Gambino, R.; Cassader, M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care, 2010, 33(10), 2277-2284.
[http://dx.doi.org/10.2337/dc10-0556] [PMID: 20876708]
[36]
Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature, 2006, 444(7122), 1022-1023.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[37]
Abdallah Ismail, N.; Ragab, S.H.; Abd Elbaky, A.; Shoeib, A.R.S.; Alhosary, Y.; Fekry, D. Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch. Med. Sci., 2011, 7(3), 501-507.
[http://dx.doi.org/10.5114/aoms.2011.23418] [PMID: 22295035]
[38]
Flemming, K.; Woolcott, C.G.; Allen, A.C.; Veugelers, P.J.; Kuhle, S. The association between caesarean section and childhood obesity revisited: a cohort study. Arch. Dis. Child., 2013, 98(7), 526-532.
[http://dx.doi.org/10.1136/archdischild-2012-303459] [PMID: 23680850]
[39]
Yang, Z.; Huang, S.; Zou, D.; Dong, D.; He, X.; Liu, N.; Liu, W.; Huang, L. Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice. Amino Acids, 2016, 48(12), 2731-2745.
[http://dx.doi.org/10.1007/s00726-016-2308-y] [PMID: 27539648]
[40]
Dai, Z.L.; Wu, G.; Zhu, W.Y. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front. Biosci., 2011, 16, 1768-1786.
[http://dx.doi.org/10.2741/3820] [PMID: 21196263]
[41]
Laviano, A.; Molfino, A.; Lacaria, M.T.; Canelli, A.; De Leo, S.; Preziosa, I.; Rossi Fanelli, F. Glutamine supplementation favors weight loss in nondieting obese female patients. A pilot study. Eur. J. Clin. Nutr., 2014, 68(11), 1264-1266.
[http://dx.doi.org/10.1038/ejcn.2014.184] [PMID: 25226827]
[42]
de Souza, A.Z.; Zambom, A.Z.; Abboud, K.Y.; Reis, S.K.; Tannihão, F.; Guadagnini, D.; Saad, M.J.; Prada, P.O. Oral supplementation with L-glutamine alters gut microbiota of obese and overweight adults: A pilot study. Nutrition, 2015, 31(6), 884-889.
[http://dx.doi.org/10.1016/j.nut.2015.01.004] [PMID: 25933498]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy