Skip to main content

Advertisement

Log in

Hemodynamic Effects of Additional Pulmonary Blood Flow on Glenn and Fontan Circulation

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Additional pulmonary blood flow (APBF) can provide better pulsating blood flow and systemic arterial oxygen saturation, while low blood pulsation and low oxygen saturation are defects of the Fontan and Glenn procedure. Studying the hemodynamic effect of APBF is beneficial for clinical decisions. This study aimed to explore the effect on particle washout, as well as the differences among the sensitivities of both different hemodynamic parameters and different procedures to APBF.

Methods

The patient-specific clinical datasets of a patient who underwent bilateral bidirectional Glenn (BBDG) with APBF were enrolled in this study, and using these datasets, Glenn- and Fontan-type artery models were reconstructed. A series of parameters, including the total caval flow pulsatility index (TCPI), indexed energy loss (iPL), wall shear stress (WSS), systemic arterial oxygen saturation (Satart), particle washout time (WOT), pressure in the right superior vena cava (PRSVC), pulmonary flow distribution (PFD) and hepatic flow distribution (HFD), were computed from computational fluid dynamic (CFD) simulation to evaluate the hemodynamic effect of APBF.

Results

The result showed that APBF led to better iPL and Satart but worse PRSVC and heart load accompanied by a great impact on HFD, making hepatic flow easier to perfuse the side without MPA and APBF. The increase in the APBF rate also effectively results in larger flow pulsation, region velocity, and wall shear stress and lower WOT, and this effect may be more effective for patients with persistent left superior vena cava (PLSVC). However, APBF might have little effect on PFD. Furthermore, APBF might affect WOT, iPL and HFD more significantly than PRSVC and has a greater improvement effect in patients with poorer iPL and WOT.

Conclusions

Moderate APBF is not only a measure to promote pulmonary artery growth and systemic arterial oxygen saturation but also an effective method against endothelial dysfunction and thrombosis. However, moderate APBF is patient-specific and should be determined based on hemodynamic preference that leads to desired patient outcomes, and care should be taken to prevent PRSVC and heart load from being too high as well as an imbalance in HFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Abbreviations

BDG:

Bidirectional Glenn

BBDG:

Bilateral bidirectional Glenn

TCPC:

Total cavopulmonary connection

SVC:

Superior vena cava

RSVC:

Right superior vena cava

LSVC:

Left superior vena cava

RPA:

Right pulmonary artery

LPA:

Left pulmonary artery

FP:

Fontan pathway

APBF:

Additional pulmonary blood flow

α :

Index of APBF rate

WSS:

Wall shear stress

PHD:

Pulmonary flow distribution

HFD:

Hepatic flow distribution

TCPI :

Total caval flow pulsatility index

\({\text{SD}}_{{{\text{O}}_{2} }}\) :

Systemic oxygen delivery

Satart :

Systemic arterial oxygen saturation

P RSVC :

Pressure in the RSVC

WOT:

Particle wash-out time

iPL:

Indexed energy loss

References

  1. Alastruey, J., K. Parker, J. Peiró, and S. Sherwin. Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation. Comput. Phys. Commun. 4(2):317–336, 2008.

    MathSciNet  MATH  Google Scholar 

  2. Beng, E. T., M. Restrepo, C. M. Haggerty, L. Mirabella, J. Bethel, K. K. Whitehead, et al. Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics. Jacc-Cardiovasc. Imaging 7(3):215–224, 2014. https://doi.org/10.1016/j.jcmg.2013.12.010.

    Article  Google Scholar 

  3. Berdat, P. A., E. Belli, F. Lacour-Gayet, C. Planche, and A. Serraf. Additional pulmonary blood flow has no adverse effect on outcome after bidirectional cavopulmonary anastomosis. Ann. Thorac. Surg. 79(1):29–37, 2005. https://doi.org/10.1016/j.athoracsur.2004.06.002.

    Article  Google Scholar 

  4. Bertagna, L., A. Quaini, and A. Veneziani. Deconvolution-based nonlinear filtering for incompressible flows at moderately large Reynolds numbers. Int. J. Numer. Methods Fluids 81(8):463–488, 2015.

    Article  MathSciNet  Google Scholar 

  5. Celestin, C., M. Guillot, N. Ross-Ascuitto, and R. Ascuitto. Computational fluid dynamics characterization of blood flow in central aorta to pulmonary artery connections: importance of shunt angulation as a determinant of shear stress-induced thrombosis. Pediatr. Cardiol. 36(3):600–615, 2015. https://doi.org/10.1007/s00246-014-1055-7.

    Article  Google Scholar 

  6. Chen, Q., R. Tulloh, M. Caputo, S. Stoica, M. Kia, and A. J. Parry. Does the persistence of pulsatile antegrade pulmonary blood flow following bidirectional Glenn procedure affect long term outcome? Eur. J. Cardiothorac. Surg. 47(1):154–158, 2015. https://doi.org/10.1093/ejcts/ezu170.

    Article  Google Scholar 

  7. de Leval, M. R. The Fontan circulation: a challenge to William Harvey? Nat. Clin. Pract. Cardiovasc. Med. 2(4):202–208, 2005. https://doi.org/10.1038/ncpcardio0157.

    Article  Google Scholar 

  8. Delorme, Y. T., M. D. Rodefeld, and S. H. Frankel. Multiblock high order large Eddy simulation of powered Fontan hemodynamics: towards computational surgery. Comput. Fluids 143:16–31, 2017. https://doi.org/10.1016/j.compfluid.2016.10.032.

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Molfetta, A., A. Amodeo, M. G. Gagliardi, M. G. Trivella, L. Fresiello, S. Filippelli, et al. Hemodynamic effects of ventricular assist device implantation on Norwood, Glenn, and Fontan circulation: a simulation study. Artif. Organs 40(1):34–42, 2016. https://doi.org/10.1111/aor.12591.

    Article  Google Scholar 

  10. Ephrem, G., C. Hebson, A. John, E. Moore, M. Jokhadar, R. Ford, et al. Frontiers in Fontan failure: innovation and improving outcomes: a conference summary. Congenit. Heart Dis. 14(2):128–137, 2019. https://doi.org/10.1111/chd.12685.

    Article  Google Scholar 

  11. Esmaily-Moghadam, M., B. Murtuza, T. Y. Hsia, and A. Marsden. Simulations reveal adverse hemodynamics in patients with multiple systemic to pulmonary shunts. J. Biomech. Eng. Trans. ASME 2015. https://doi.org/10.1115/1.4029429.

    Article  Google Scholar 

  12. Estafanous, F. G., P. G. Barash, and J. G. Reves. Cardiac Anesthesia: Principles and Clinical Practice (2nd ed.). Philadelphia: Lippincott Williams & Wilkins, 2001.

    Google Scholar 

  13. Garg, P., S. Talwar, S. S. Kothari, P. Rajashekar, R. Saxena, and B. Airan. Role of systemic to pulmonary artery shunt after cavopulmonary anastomosis. J. Cardiac Surg. 28(5):599–603, 2013. https://doi.org/10.1111/jocs.12154.

    Article  Google Scholar 

  14. Gerelli, S., C. Boulitrop, M. Van Steenberghe, D. Maldonado, M. Bojan, O. Raisky, et al. Bidirectional cavopulmonary shunt with additional pulmonary blood flow: a failed or successful strategy? Eur. J. Cardiothorac. Surg. 42(3):513–519, 2012. https://doi.org/10.1093/ejcts/ezs053.

    Article  Google Scholar 

  15. Ghoreyshi, M., M. S. Saidi, M. A. Navabi, B. D. Firoozabadi, and R. Shabanian. Numerical investigation of Antegrade Flow effects on flow pulsations in Fontan operation. Int. J. Biomed. Eng. Technol. 10(3):221–238, 2012.

    Article  Google Scholar 

  16. Henaine, R., M. Vergnat, E. A. Bacha, B. Baudet, V. Lambert, E. Belli, et al. Effects of lack of pulsatility on pulmonary endothelial function in the Fontan circulation. J. Thorac. Cardiovasc. Surg. 146(3):522–529, 2013. https://doi.org/10.1016/j.jtcvs.2012.11.031.

    Article  Google Scholar 

  17. Hjortdal, V. E., T. D. Christensen, S. H. Larsen, K. Emmertsen, and E. M. Pedersen. Caval blood flow during supine exercise in normal and Fontan patients. Ann. Thorac. Surg. 85(2):599–603, 2008. https://doi.org/10.1016/j.athoracsur.2007.08.062.

    Article  Google Scholar 

  18. Holme, P. A., U. Orvim, M. Hamers, N. O. Solum, F. R. Brosstad, R. M. Barstad, et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler. Thromb. Vasc. Biol. 17(4):646–653, 1997. https://doi.org/10.1161/01.atv.17.4.646.

    Article  Google Scholar 

  19. Imoto, Y., A. Sese, and K. Joh. Redirection of the hepatic venous flow for the treatment of pulmonary arteriovenous malformations after fontan operation. Pediatr. Cardiol. 27(4):490–492, 2006. https://doi.org/10.1007/s00246-006-1242-2.

    Article  Google Scholar 

  20. Khiabani, R. H., K. K. Whitehead, D. Han, M. Restrepo, E. Tang, J. Bethel, et al. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart 101(2):139–143, 2015. https://doi.org/10.1136/heartjnl-2014-306337.

    Article  Google Scholar 

  21. Kim, H., I. Vignon-Clementel, C. Figueroa, J. LaDisa, K. Jansen, J. Feinstein, et al. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Eng. 37(11):2153–2169, 2009.

    Article  Google Scholar 

  22. Klimes, K., H. Abdul-Khaliq, S. Ovroutski, W. Hui, V. Alexi-Meskishvili, B. Spors, et al. Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study. Clin. Res. Cardiol. 96(3):160–167, 2007. https://doi.org/10.1007/s00392-007-0470-z.

    Article  Google Scholar 

  23. Kocyildirim, E., O. Dur, O. Soran, E. Tuzun, M. W. Miller, G. J. Housler, et al. Pulsatile venous waveform quality in Fontan circulation-clinical implications, venous assists options and the future. Anadolu Kardiyoloji Dergisi 12(5):420–426, 2012. https://doi.org/10.5152/akd.2012.126.

    Article  Google Scholar 

  24. Kogon, B. E., C. Plattner, T. Leong, J. Simsic, P. M. Kirshbom, and K. R. Kanter. The bidirectional Glenn operation: a risk factor analysis for morbidity and mortality. J. Thorac. Cardiovasc. Surg. 136(5):1237–1242, 2008. https://doi.org/10.1016/j.jtcvs.2008.05.017.

    Article  Google Scholar 

  25. Long, C. C., M. C. Hsu, Y. Bazilevs, J. A. Feinstein, and A. L. Marsden. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties. Int. J. Numer. Methods Biomed. Eng. 28(5):513–527, 2012. https://doi.org/10.1002/cnm.1485.

    Article  MathSciNet  MATH  Google Scholar 

  26. Mainwaring, R. D., J. J. Lamberti, K. Uzark, R. L. Spicer, M. W. Cocalis, and J. W. Moore. Effect of accessory pulmonary blood flow on survival after the bidirectional Glenn procedure. Circulation 100(19):151–156, 1999.

    Google Scholar 

  27. Migliavacca, F., M. R. de Leval, G. Dubini, and R. Pietrabissa. A computational pulsatile model of the bidirectional cavopulmonary anastomosis: the influence of pulmonary forward flow. J. Biomech. Eng. 118(4):520–528, 1996. https://doi.org/10.1115/1.2796039.

    Article  Google Scholar 

  28. Mirabella, L., C. M. Haggerty, T. Passerini, M. Piccinelli, A. J. Powell, P. J. D. Nido, et al. Treatment planning for a TCPC test case: a numerical investigation under rigid and moving wall assumptions. Int. J. Numer. Methods Biomed. Eng. 29(2):197–216, 2012.

    Article  MathSciNet  Google Scholar 

  29. Nichay, N. R., Y. N. Gorbatykh, I. Kornilov, I. A. Soynov, S. M. Ivantsov, A. V. Gorbatykh, et al. Bidirectional cavopulmonary anastomosis with additional pulmonary blood flow: good or bad pre-Fontan strategy. Interact. Cardiovasc. Thorac. Surg. 24(4):582–589, 2017. https://doi.org/10.1093/icvts/ivw429.

    Article  Google Scholar 

  30. Pennati, G., F. Migliavacca, G. Dubini, R. Pietrabissa, R. Fumero, and M. R. de Leval. Use of mathematical model to predict hemodynamics in cavopulmonary anastomosis with persistent forward flow. J. Surg. Res. 89(1):43–52, 2000. https://doi.org/10.1006/jsre.1999.5799.

    Article  Google Scholar 

  31. Pike, N. A., L. A. Vricella, J. A. Feinstein, M. D. Black, and B. A. Reitz. Regression of severe pulmonary arteriovenous malformations after Fontan revision and “Hepatic factor” rerouting. Ann. Thorac. Surg. 78(2):697–699, 2004. https://doi.org/10.1016/j.athorascur.2004.02.003.

    Article  Google Scholar 

  32. Quarteroni, A., A. Veneziani, and C. Vergara. Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302:193–252, 2016. https://doi.org/10.1016/j.cma.2016.01.007.

    Article  MathSciNet  MATH  Google Scholar 

  33. Schoephoerster, R. T., F. Oynes, G. Nunez, M. Kapadvanjwala, and M. K. Dewanjee. Effects of local geometry and fluid dynamics on regional platelet deposition on artificial surfaces. Arterioscler. Thromb. 13(12):1806–1813, 1993. https://doi.org/10.1161/01.atv.13.12.1806.

    Article  Google Scholar 

  34. Si, B., B. Qiao, G. Yang, M. Zhu, F. Zhao, T. Wang, et al. Numerical investigation of the effect of additional pulmonary blood flow on patient-specific bilateral bidirectional Glenn hemodynamics. Cardiovasc. Eng. Technol. 9(2):193–201, 2018. https://doi.org/10.1007/s13239-018-0341-6.

    Article  Google Scholar 

  35. Tang, E., Z. A. Wei, P. M. Trusty, K. K. Whitehead, L. Mirabella, A. Veneziani, et al. The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning. J. Biomech. 82:87–95, 2019. https://doi.org/10.1016/j.jbiomech.2018.10.013.

    Article  Google Scholar 

  36. Tanoue, Y., A. Sese, Y. Ueno, K. Joh, and T. Hijii. Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk Fontan candidates. Circulation 103(17):2176–2180, 2001.

    Article  Google Scholar 

  37. Tree, M., Z. A. Wei, P. M. Trusty, V. Raghav, M. Fogel, K. Maher, et al. Using a novel in vitro fontan model and condition-specific real-time MRI data to examine hemodynamic effects of respiration and exercise. Ann. Biomed. Eng. 46(1):135–147, 2018. https://doi.org/10.1007/s10439-017-1943-0.

    Article  Google Scholar 

  38. van Slooten, Y. J., N. J. Elzenga, T. W. Waterbolk, J. P. van Melle, R. M. F. Berger, and T. Ebels. The effect of additional pulmonary blood flow on timing of the total cavopulmonary connection. Ann. Thorac. Surg. 93(6):2028–2034, 2012. https://doi.org/10.1016/j.athoracsur.2012.02.053.

    Article  Google Scholar 

  39. Voges, I., M. Jerosch-Herold, C. Hart, J. Scheewe, D. D. Gabbert, E. Pardun, et al. Anatomical and functional assessment of the intra-atrial lateral tunnel in the Fontan circulation(dagger). Eur. J. Cardiothorac. Surg. 44(3):462–467, 2013. https://doi.org/10.1093/ejcts/ezt066.

    Article  Google Scholar 

  40. Yang, W. G., F. P. Chan, V. M. Reddy, A. L. Marsden, and J. A. Feinstein. Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. J. Thorac. Cardiovasc. Surg. 149(1):247–255, 2015. https://doi.org/10.1016/j.jtcvs.2014.08.069.

    Article  Google Scholar 

  41. Yoshida, M., M. Yamaguchi, N. Yoshimura, H. Murakami, H. Matsuhisa, and Y. Okita. Appropriate additional pulmonary blood flow at the bidirectional Glenn procedure is useful for completion of total cavopulmonary connection. Ann. Thorac. Surg. 80(3):976–981, 2005. https://doi.org/10.1016/j.athoracsur.2005.03.090.

    Article  Google Scholar 

  42. Zhan, F., Y. Fan, and X. Deng. Swirling flow created in a glass tube suppressed platelet adhesion to the surface of the tube: its implication in the design of small-caliber arterial grafts. Thromb. Res. 125(5):413–418, 2010. https://doi.org/10.1016/j.thromres.2009.02.011.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the key Program of Union of National Natural Science Foundation of China-Guangdong Province [U1401255], the National key Research and Development Program [2018YFC1002600], the Natural Science Foundation of Guangdong Province [2018A030313785], Science and Technology Planning Project of Guangdong Province, China [Nos. 2017A070701013, 2017B090904034, 2017B030314109, 2018B090944002 and 2019B020230003], and Guangdong Peak Project [DFJH201802].

Conflict of interest

The authors declare that they have no competing interests.

Statement Involving Human and Animal Rights

No human studies or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qifei Jian or Jian Zhuang.

Additional information

Associate Editor Kerem Pekkan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 59791 kb)

Supplementary material 2 (WMV 40099 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yuan, H., Liu, J. et al. Hemodynamic Effects of Additional Pulmonary Blood Flow on Glenn and Fontan Circulation. Cardiovasc Eng Tech 11, 268–282 (2020). https://doi.org/10.1007/s13239-020-00459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00459-x

Keywords

Navigation