Skip to main content

Advertisement

Log in

Dual Carbon Dioxide Capture to Achieve Highly Efficient Ultra-Low Blood Flow Extracorporeal Carbon Dioxide Removal

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Extracorporeal CO2 removal is a highly promising support therapy for patients with hypercapnic respiratory failure but whose clinical implementation and patient benefit is hampered by high cost and highly specialized expertise required for safe use. Current approaches target removal of the gaseous CO2 dissolved in blood which limits their ease of clinical use as high blood flow rates are required to achieve physiologically significant CO2 clearance. Here, a novel hybrid approach in which a zero-bicarbonate dialysis is used to target removal of bicarbonate ion coupled to a gas exchange device to clear dissolved CO2, achieves highly efficiently total CO2 capture while maintaining systemic acid–base balance. In a porcine model of acute hypercapnic respiratory failure, a CO2-reduction of 61.4 ± 14.4 mL/min was achieved at a blood flow rate of 248 mL/min using pediatric-scale priming volumes. The dialyzer accounted for 81% of total CO2 capture with an efficiency of 33% with a minimal pH change across the entire circuit. This study demonstrates the feasibility of a novel hybrid CO2 capture approach capable of achieving physiologically significant CO2 removal at ultralow blood flow rates with low priming volumes while leveraging widely available dialysis platforms to enable clinical adoption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ECCO2R:

Extracorporeal CO2 removal

HRF:

Hypercapnic respiratory failure

COPD:

Chronic obstructive pulmonary disease

IMV:

Invasive mechanical ventilation

References

  1. Aaron, S. D., G. C. Donaldson, G. A. Whitmore, J. R. Hurst, T. Ramsay, and J. A. Wedzicha. Time course and pattern of COPD exacerbation onset. Thorax 67:238–243, 2012.

    PubMed  Google Scholar 

  2. Alessandri, F., F. Pugliese, L. Mascia, and M. V. Ranieri. Intermittent extracorporeal CO2 removal in chronic obstructive pulmonary disease patients. Curr. Opin. Crit. Care. 24:29–34, 2018.

    PubMed  Google Scholar 

  3. Antonelli, M., G. Conti, M. Rocco, M. Bufi, R. A. De Blasi, G. Vivino, A. Gasparetto, and G. U. Meduri. A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N. Engl. J. Med. 339:429–435, 1998.

    CAS  PubMed  Google Scholar 

  4. Barnes, T., V. Zochios, and K. Parhar. Re-examining permissive hypercapnia in ARDS: a narrative review. Chest. 154:185–195, 2018.

    PubMed  Google Scholar 

  5. Batchinsky, A. I., B. S. Jordan, D. Regn, C. Necsoiu, W. J. Federspiel, M. J. Morris, and L. C. Cancio. Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal*. Crit. Care Med. 39:1382–1387, 2011.

    PubMed  Google Scholar 

  6. Bisdas, T., G. Beutel, G. Warnecke, M. M. Hoeper, C. Kuehn, A. Haverich, and O. E. Teebken. Vascular complications in patients undergoing femoral cannulation for extracorporeal membrane oxygenation support. Ann. Thorac. Surg. 92:626–631, 2011.

    PubMed  Google Scholar 

  7. Bosch, J. P., S. Glabman, G. Moutoussis, M. Belledonne, B. von Albertini, and T. Kahn. Carbon dioxide removal in acetate hemodialysis: effects on acid base balance. Kidney Int. 25:830–837, 1984.

    CAS  PubMed  Google Scholar 

  8. Burney, P. G. J., J. Patel, R. Newson, C. Minelli, and M. Naghavi. Global and regional trends in COPD mortality, 1990–2010. Eur. Respir. J. 45:1239–1247, 2015.

    PubMed  PubMed Central  Google Scholar 

  9. CDC - Data and Statistics - Chronic Obstructive Pulmonary Disease (COPD). Centers Dis Control Pervention

  10. Cove, M. E., G. MacLaren, W. J. Federspiel, and J. A. Kellum. Bench to bedside review: extracorporeal carbon dioxide removal, past present and future. Crit. Care. 16:232, 2012.

    PubMed  PubMed Central  Google Scholar 

  11. Croft, J. B., A. G. Wheaton, Y. Liu, F. Xu, H. Lu, K. A. Matthews, T. J. Cunningham, Y. Wang, and J. B. Holt. Urban-rural county and state differences in chronic obstructive pulmonary disease—United States, 2015. MMWR Morb. Mortal. Wkly. Rep. 67:205–211, 2018.

    PubMed  PubMed Central  Google Scholar 

  12. Dasta, J. F., T. P. McLaughlin, S. H. Mody, and C. T. Piech. Daily cost of an intensive care unit day: the contribution of mechanical ventilation. Crit. Care Med. 33:1266–1271, 2005.

    PubMed  Google Scholar 

  13. de Villiers Hugo, J., A. S. Sharma, U. Ahmed, and P. W. Weerwind. Quantification of carbon dioxide removal at low sweep gas and blood flows. J. Extra Corpor. Technol. 49:257–261, 2017.

    PubMed  PubMed Central  Google Scholar 

  14. Dhingra, R. K., E. W. Young, T. E. Hulbert-Shearon, S. F. Leavey, and F. K. Port. Type of vascular access and mortality in U.S. hemodialysis patients. Kidney Int. 60:1443–1451, 2001.

    CAS  PubMed  Google Scholar 

  15. Donaldson, G. C., and J. A. Wedzicha. COPD exacerbations 1: epidemiology. Thorax 61:164–168, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Grasselli, G., and A. Pesenti. Extracorporeal CO2 removal: A powerful tool to be handled with care. Minerva Anestesiol. 83:682–684, 2017.

    PubMed  Google Scholar 

  17. Hackbarth, R., T. E. Bunchman, A. N. Chua, M. J. Somers, M. A. Baum, J. M. Symons, P. D. Brophy, D. Blowey, J. D. Fortenberry, D. Chand, F. X. Flores, S. R. Alexander, J. D. Mahan, K. D. McBryde, M. R. Benfield, and S. L. Goldstein. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int. J. Artif. Organs. 30:1116–1121, 2007.

    CAS  PubMed  Google Scholar 

  18. Harvey, M. J., M. G. Gaies, and L. A. Prosser. US and international in-hospital costs of extracorporeal membrane oxygenation: a systematic review. Appl. Health Econ. Health Policy 13:341–357, 2015.

    PubMed  Google Scholar 

  19. Hattler, B. G., P. C. Johnson, P. J. Sawzik, F. D. Shaffer, M. Klain, L. W. Lund, G. D. Reeder, F. R. Walters, J. S. Goode, and H. S. Borovetz. Respiratory dialysis. A new concept in pulmonary support. ASAIO J. 38:M322–M325, 1992.

    CAS  PubMed  Google Scholar 

  20. Hayashi, Y., K. Morisawa, M. Klompas, M. Jones, H. Bandeshe, R. Boots, J. Lipman, and D. L. Paterson. Toward improved surveillance: the impact of ventilator-associated complications on length of stay and antibiotic use in patients in intensive care units. Clin. Infect. Dis. 56:471–477, 2013.

    CAS  PubMed  Google Scholar 

  21. Hermans, G., A. Wilmer, W. Meersseman, I. Milants, P. J. Wouters, H. Bobbaers, F. Bruyninckx, and G. Van den Berghe. Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am. J. Respir. Crit. Care Med. 175:480–489, 2007.

    CAS  PubMed  Google Scholar 

  22. Jeffries, R. G., L. Lund, B. Frankowski, and W. J. Federspiel. An extracorporeal carbon dioxide removal (ECCO2R) device operating at hemodialysis blood flow rates. Intensive Care Med. Exp. 5:1–12, 2017.

    Google Scholar 

  23. Jeffries, R. G., Y. Mussin, D. S. Bulanin, L. W. Lund, E. Kocyildirim, Z. Z. Zhumadilov, F. S. Olzhayev, W. J. Federspiel, and P. D. Wearden. Pre-clinical evaluation of an adult extracorporeal carbon dioxide removal system with active mixing for pediatric respiratory support. Int. J. Artif. Organs. 37:888–899, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jones-Akhtarekhavari, J., T. A. Tribble, and J. B. Zwischenberger. Developing an extracorporeal membrane oxygenation program. Crit. Care Clin. 33:767–775, 2017.

    PubMed  Google Scholar 

  25. Karagiannidis, C., S. Strassmann, D. Brodie, P. Ritter, A. Larsson, R. Borchardt, and W. Windisch. Impact of membrane lung surface area and blood flow on extracorporeal CO2 removal during severe respiratory acidosis. Intensive Care Med. Exp. 5:34, 2017.

    PubMed  PubMed Central  Google Scholar 

  26. Karagiannidis, C., S. Strassmann, S. Schwarz, M. Merten, E. Fan, J. Beck, C. Sinderby, and W. Windisch. Control of respiratory drive by extracorporeal CO2 removal in acute exacerbation of COPD breathing on non-invasive NAVA. Crit. Care 23:1–9, 2019.

    Google Scholar 

  27. Kellum, J. A. Determinants of blood pH in health and disease. Crit. Care 4:6, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kokubo, K., Y. Kurihara, K. Kobayashi, H. Tsukao, and H. Kobayashi. Evaluation of the biocompatibility of dialysis membranes. Blood Purif. 40:293–297, 2015.

    CAS  PubMed  Google Scholar 

  29. Lee, H., B. Manns, K. Taub, W. A. Ghali, S. Dean, D. Johnson, and C. Donaldson. Cost analysis of ongoing care of patients with end-stage renal disease: the impact of dialysis modality and dialysis access. Am. J. Kidney Dis. 40:611–622, 2002.

    PubMed  Google Scholar 

  30. Lightowler, J. V., J. A. Wedzicha, M. W. Elliott, and F. S. F. Ram. Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: cochrane systematic review and meta-analysis. BMJ 326:185, 2003.

    PubMed  PubMed Central  Google Scholar 

  31. Lund, L. W., and W. J. Federspiel. Removing extra CO2 in COPD patients. Curr. Respir. Care Rep. 2:131–138, 2013.

    PubMed  PubMed Central  Google Scholar 

  32. MacIntyre, N., and Y. C. Huang. Acute exacerbations and respiratory failure in chronic obstructive pulmonary disease. Proc. Am. Thorac Soc. 5:530–535, 2008.

    PubMed  PubMed Central  Google Scholar 

  33. Mani, R. K., W. Schmidt, L. W. Lund, and F. J. F. Herth. Respiratory dialysis for avoidance of intubation in acute exacerbation of COPD. ASAIO J. 59:675–678, 2013.

    PubMed  Google Scholar 

  34. Maxwell, B. G., J. J. Mooney, P. H. U. Lee, J. E. Levitt, L. Chhatwani, M. R. Nicolls, M. R. Zamora, V. Valentine, D. Weill, and G. S. Dhillon. Increased resource use in lung transplant admissions in the lung allocation score era. Am. J. Respir. Crit. Care Med. 191:302–308, 2015.

    PubMed  PubMed Central  Google Scholar 

  35. Maxwell, B. G., A. J. Powers, A. Y. Sheikh, P. H. U. Lee, R. L. Lobato, and J. K. Wong. Resource use trends in extracorporeal membrane oxygenation in adults: an analysis of the Nationwide Inpatient Sample 1998–2009. J. Thorac Cardiovasc. Surg. 148(416–421):e1, 2014.

    Google Scholar 

  36. May, A. G., A. Sen, M. E. Cove, J. A. Kellum, and W. J. Federspiel. Extracorporeal CO2 removal by hemodialysis: in vitro model and feasibility. Intensive Care Med. Exp. 5:20, 2017.

    PubMed  PubMed Central  Google Scholar 

  37. McKeever, T. M., G. Hearson, G. Housley, C. Reynolds, W. Kinnear, T. W. Harrison, A.-M. Kelly, and D. E. Shaw. Using venous blood gas analysis in the assessment of COPD exacerbations: a prospective cohort study. Thorax 71:210–215, 2016.

    PubMed  Google Scholar 

  38. Mehta, A. B., I. S. Douglas, and A. J. Walkey. Hospital noninvasive ventilation case volume and outcomes of acute exacerbations of chronic obstructive pulmonary disease. Ann. Am. Thorac Soc. 13:1752–1759, 2016.

    PubMed  PubMed Central  Google Scholar 

  39. Nalesso, F., and R. Claudio. Selecting a dialyzer: technical and clinical considerations. Handb. Dial. Ther. 2017. https://doi.org/10.1016/b978-0-323-39154-2.00017-5.

    Article  Google Scholar 

  40. Oh, M., and G. Briefel. Evaluation of renal function, water, electrolytes, and acid–base balance. In: Henry’s Clinical Diagnosis and Management by Laboratory Methods. 23rd, edited by R. McPherson, and M. Pincus. St. Louis: Elsevier, 2017.

    Google Scholar 

  41. Pisani, L., N. Corcione, and S. Nava. Management of acute hypercapnic respiratory failure. Curr. Opin. Crit. Care 22:45–52, 2016.

    PubMed  Google Scholar 

  42. Rapoport, J., D. Teres, S. Lemeshow, J. S. Avrunin, and R. Haber. Explaining variability of cost using a severity-of-illness measure for ICU patients. Med. Care 28:338–348, 1990.

    CAS  PubMed  Google Scholar 

  43. Rycroft, C. E., A. Heyes, L. Lanza, and K. Becker. Epidemiology of chronic obstructive pulmonary disease: a literature review. Int. J. Chron. Obstruct. Pulmon. Dis. 7:457–494, 2012.

    PubMed  PubMed Central  Google Scholar 

  44. Schwartz, W. B., and A. S. Relman. A critique of the parameters used in the evaluation of acid–base disorders. N. Engl. J. Med. 268:1382–1388, 1963.

    CAS  PubMed  Google Scholar 

  45. Sheldon, M., and E. Ali. Practical approach to physical-chemical acid-base management: stewart at the bedside. Ann. Am. Thorac. Soc. 12:111–117, 2015.

    Google Scholar 

  46. Soler-Cataluña, J. J., M. A. Martínez-García, P. Román Sánchez, E. Salcedo, M. Navarro, and R. Ochando. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax 60:925–931, 2005.

    PubMed  PubMed Central  Google Scholar 

  47. Suissa, S., S. Dell’Aniello, and P. Ernst. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax 67:957–963, 2012.

    PubMed  PubMed Central  Google Scholar 

  48. Trahanas, J. M., W. R. Lynch, and R. H. Bartlett. Extracorporeal support for chronic obstructive pulmonary disease: a bright future. J. Intensive Care Med. 32:411–420, 2017.

    PubMed  Google Scholar 

  49. Vanherweghem, J. L., M. Dhaene, M. Goldman, J. C. Stolear, J. P. Sabot, Y. Waterlot, E. Serruys, and C. Thayse. Infections associated with subclavian dialysis catheters: the key role of nurse training. Nephron 42:116–119, 1986.

    CAS  PubMed  Google Scholar 

  50. Wearden, P. D., W. J. Federspiel, S. W. Morley, M. Rosenberg, P. D. Bieniek, L. W. Lund, and B. D. Ochs. Respiratory dialysis with an active-mixing extracorporeal carbon dioxide removal system in a chronic sheep study. Intensive Care Med. 38:1705–1711, 2012.

    PubMed  PubMed Central  Google Scholar 

  51. Wei, X., P. G. Sanchez, Y. Liu, A. Claire Watkins, T. Li, B. P. Griffith, and Z. J. Wu. Extracorporeal respiratory support with a miniature integrated pediatric pump-lung device in an acute ovine respiratory failure model. Artif. Organs 40:1046–1053, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Williams, M. H., and C. S. Shim. Ventilatory failure. Etiology and clinical forms. Am. J. Med. 48:477–483, 1970.

    PubMed  Google Scholar 

  53. Wintermann, G.-B., K. Weidner, B. Strauß, J. Rosendahl, and K. Petrowski. Predictors of posttraumatic stress and quality of life in family members of chronically critically ill patients after intensive care. Ann. Intensive Care 6:69, 2016.

    PubMed  PubMed Central  Google Scholar 

  54. Zhang, X., J. B. Holt, H. Lu, A. G. Wheaton, E. S. Ford, K. J. Greenlund, and J. B. Croft. Multilevel regression and poststratification for small-area estimation of population health outcomes: a case study of chronic obstructive pulmonary disease prevalence using the behavioral risk factor surveillance system. Am. J. Epidemiol. 179:1025–1033, 2014.

    PubMed  Google Scholar 

  55. Zwillich, C. W., D. J. Pierson, C. E. Creagh, F. D. Sutton, E. Schatz, and T. L. Petty. Complications of assisted ventilation. Am. J. Med. 57:161–170, 1974.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are deeply indebted to the dedication and hard work of Mr. Jayon Wang for his efforts in conducting benchtop and animal experiments and for advancing the progress of this work. We also thank Ms. Samantha Russman for her critical aid with the benchtop experiments and data analysis.

Funding

SPK was funded by NIH 5K08HL143342-02. Partial funding for this work was provided by the Maxwell Maxcare Science Foundation in an exploratory research grant.

Author Contributions

BYC and SPK conceptualized and designed the project. BYC designed and conducted benchtop experiments. BYC and SPK designed and conducted animal studies, collated and analyzed animal study results, and prepared the manuscript.

Competing interests

BYC and SPK are co-inventors on pending international patent application PCT/US2018/051370 that covers a combined dialysis and oxygenator approach to treating hypercarbic respiratory failure. BYC and SPK are advisors to an early stage start-up entity that is attempting to manufacture the devices described in this manuscript.

Data and materials availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Keller.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, B.Y., Keller, S.P. Dual Carbon Dioxide Capture to Achieve Highly Efficient Ultra-Low Blood Flow Extracorporeal Carbon Dioxide Removal. Ann Biomed Eng 48, 1562–1572 (2020). https://doi.org/10.1007/s10439-020-02477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02477-1

Keywords

Navigation