Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 18, 2020

Asymmetric inheritance of mitochondria in yeast

  • Till Klecker and Benedikt Westermann ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Mitochondria are essential organelles of virtually all eukaryotic organisms. As they cannot be made de novo, they have to be inherited during cell division. In this review, we provide an overview on mitochondrial inheritance in Saccharomyces cerevisiae, a powerful model organism to study asymmetric cell division. Several processes have to be coordinated during mitochondrial inheritance: mitochondrial transport along the actin cytoskeleton into the emerging bud is powered by a myosin motor protein; cell cortex anchors retain a critical fraction of mitochondria in the mother cell and bud to ensure proper partitioning; and the quantity of mitochondria inherited by the bud is controlled during cell cycle progression. Asymmetric division of yeast cells produces rejuvenated daughter cells and aging mother cells that die after a finite number of cell divisions. We highlight the critical role of mitochondria in this process and discuss how asymmetric mitochondrial partitioning and cellular aging are connected.

Acknowledgments

This paper is dedicated to the memory of Walter Neupert, who has been an inspiring mentor and great collaborator to BW for 27 years. We thank Veronika Bartosch and Xenia Chelius for critically reading the manuscript and Moritz Mayer for providing the electron micrograph shown in Figure 1. Research in the authors’ lab is funded by Deutsche Forschungsgemeinschaft through grants WE 2714/5-2 and WE 2714/7-1 and Elitenetzwerk Bayern through the Biological Physics program.

References

Akhmanova, A. and Hammer 3rd, J.A. (2010). Linking molecular motors to membrane cargo. Curr. Opin. Cell Biol. 22, 479–487.10.1016/j.ceb.2010.04.008Search in Google Scholar PubMed PubMed Central

Altmann, K. and Westermann, B. (2005). Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol. Biol. Cell 16, 5410–5417.10.1091/mbc.e05-07-0678Search in Google Scholar PubMed PubMed Central

Altmann, K., Frank, M., Neumann, D., Jakobs, S., and Westermann, B. (2008). The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J. Cell Biol. 181, 119–130.10.1083/jcb.200709099Search in Google Scholar PubMed PubMed Central

Arai, S., Noda, Y., Kainuma, S., Wada, I., and Yoda, K. (2008). Ypt11 functions in bud-directed transport of the Golgi by linking Myo2 to the coatomer subunit Ret2. Curr. Biol. 18, 987–991.10.1016/j.cub.2008.06.028Search in Google Scholar PubMed

Aretz, I., Jakubke, C., and Osman, C. (2019). Power to the daughters – mitochondrial and mtDNA transmission during cell division. Biol. Chem. doi: 10.1515/hsz-2019-0337. [Epub ahead of print].10.1515/hsz-2019-0337Search in Google Scholar PubMed

Babazadeh, R., Ahmadpour, D., Jia, S., Hao, X., Widlund, P., Schneider, K., Eisele, F., Edo, L.D., Smits, G.J., Liu, B., et al. (2019). Syntaxin 5 Is required for the formation and clearance of protein inclusions during proteostatic stress. Cell Rep. 28, 2096–2110.10.1016/j.celrep.2019.07.053Search in Google Scholar PubMed

Bleazard, W., McCaffery, J.M., King, E.J., Bale, S., Mozdy, A., Tieu, Q., Nunnari, J., and Shaw, J.M. (1999). The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1, 298–304.10.1038/13014Search in Google Scholar PubMed PubMed Central

Böckler, S., Chelius, X., Hock, N., Klecker, T., Wolter, M., Weiss, M., Braun, R.J., and Westermann, B. (2017). Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates. J. Cell Biol. 216, 2481–2498.10.1083/jcb.201611197Search in Google Scholar PubMed PubMed Central

Boldogh, I.R. and Pon, L.A. (2007). Mitochondria on the move. Trends Cell Biol. 17, 502–510.10.1016/j.tcb.2007.07.008Search in Google Scholar PubMed

Boldogh, I.R., Yang, H.-C., Nowakowski, W.D., Karmon, S.L., Hays, L.G., Yates III, J.R., and Pon, L.A. (2001). Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc. Natl. Acad. Sci. U.S.A. 98, 3162–3167.10.1073/pnas.051494698Search in Google Scholar PubMed PubMed Central

Boldogh, I.R., Nowakowski, D.W., Yang, H.C., Chung, H., Karmon, S., Royes, P., and Pon, L.A. (2003). A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell 14, 4618–4627.10.1091/mbc.e03-04-0225Search in Google Scholar PubMed PubMed Central

Boldogh, I.R., Ramcharan, S.L., Yang, H.C., and Pon, L.A. (2004). A type V myosin (Myo2p) and a Rab-like G-protein (Ypt11p) are required for retention of newly inherited mitochondria in yeast cells during cell division. Mol. Biol. Cell 15, 3994–4002.10.1091/mbc.e04-01-0053Search in Google Scholar PubMed PubMed Central

Bruderek, M., Jaworek, W., Wilkening, A., Rüb, C., Cenini, G., Förtsch, A., Sylvester, M., and Voos, W. (2018). IMiQ: a novel protein quality control compartment protecting mitochondrial functional integrity. Mol. Biol. Cell 29, 256–269.10.1091/mbc.E17-01-0027Search in Google Scholar PubMed PubMed Central

Cameron, L.A., Giardini, P.A., Soo, F.S., and Theriot, J.A. (2000). Secrets of actin-based motility revealed by a bacterial pathogen. Nat Rev Mol Cell Biol 1, 110–119.10.1038/35040061Search in Google Scholar PubMed

Cerveny, K.L., Studer, S.L., Jensen, R.E., and Sesaki, H. (2007). Yeast mitochondrial division and distribution require the cortical Num1 protein. Dev. Cell 12, 363–375.10.1016/j.devcel.2007.01.017Search in Google Scholar PubMed

Chacko, L.A., Mehta, K., and Ananthanarayanan, V. (2019). Cortical tethering of mitochondria by the anchor protein Mcp5 enables uniparental inheritance. J. Cell Biol. 218, 3560–3571.10.1083/jcb.201901108Search in Google Scholar PubMed PubMed Central

Chen, W., Ping, H.A., and Lackner, L.L. (2018). Direct membrane binding and self-interaction contribute to Mmr1 function in mitochondrial inheritance. Mol. Biol. Cell 29, 2346–2357.10.1091/mbc.E18-02-0122Search in Google Scholar PubMed PubMed Central

Chernyakov, I., Santiago-Tirado, F., and Bretscher, A. (2013). Active segregation of yeast mitochondria by Myo2 is essential and mediated by Mmr1 and Ypt11. Curr. Biol. 23, 1818–1824.10.1016/j.cub.2013.07.053Search in Google Scholar PubMed PubMed Central

Dalton, C.M. and Carroll, J. (2013). Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J. Cell Sci. 126, 2955–2964.Search in Google Scholar

Dimmer, K.S., Fritz, S., Fuchs, F., Messerschmitt, M., Weinbach, N., Neupert, W., and Westermann, B. (2002). Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 847–853.10.1091/mbc.01-12-0588Search in Google Scholar PubMed PubMed Central

Du, Y., Walker, L., Novick, P., and Ferro-Novick, S. (2006). Ptc1p regulates cortical ER inheritance via Slt2p. EMBO J. 25, 4413–4422.10.1038/sj.emboj.7601319Search in Google Scholar PubMed PubMed Central

Dürr, M., Escobar-Henriques, M., Merz, S., Geimer, S., Langer, T., and Westermann, B. (2006). Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast. Mol. Biol. Cell 17, 3745–3755.10.1091/mbc.e06-01-0053Search in Google Scholar PubMed PubMed Central

Eves, P.T., Jin, Y., Brunner, M., and Weisman, L.S. (2012). Overlap of cargo binding sites on myosin V coordinates the inheritance of diverse cargoes. J. Cell Biol. 198, 69–85.10.1083/jcb.201201024Search in Google Scholar PubMed PubMed Central

Fagarasanu, A., Mast, F.D., Knoblach, B., and Rachubinski, R.A. (2010). Molecular mechanisms of organelle inheritance: lessons from peroxisomes in yeast. Nat. Rev. Mol. Cell Biol. 11, 644–654.10.1038/nrm2960Search in Google Scholar PubMed

Farkasovsky, M. and Küntzel, H. (1995). Yeast Num1p associates with the mother cell cortex during S/G2 phase and affects microtubular functions. J. Cell Biol. 131, 1003–1014.10.1083/jcb.131.4.1003Search in Google Scholar PubMed PubMed Central

Farkasovsky, M. and Küntzel, H. (2001). Cortical Num1p interacts with the dynein intermediate chain Pac11p and cytoplasmic microtubules in budding yeast. J. Cell Biol. 152, 251–262.10.1083/jcb.152.2.251Search in Google Scholar PubMed PubMed Central

Fehrenbacher, K.L., Yang, H.C., Gay, A.C., Huckaba, T.M., and Pon,L.A. (2004). Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr. Biol. 14, 1996–2004.10.1016/j.cub.2004.11.004Search in Google Scholar PubMed

Fehrenbacher, K.L., Boldogh, I.R., and Pon, L.A. (2005). A role for Jsn1p in recruiting the Arp2/3 complex to mitochondria in budding yeast. Mol. Biol. Cell 16, 5094–5102.10.1091/mbc.e05-06-0590Search in Google Scholar PubMed PubMed Central

Förtsch, J., Hummel, E., Krist, M., and Westermann, B. (2011). The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast. J. Cell Biol. 194, 473–488.10.1083/jcb.201012088Search in Google Scholar PubMed PubMed Central

Frederick, R.L. and Shaw, J.M. (2007). Moving mitochondria: establishing distribution of an essential organelle. Traffic 8, 1668–1675.10.1111/j.1600-0854.2007.00644.xSearch in Google Scholar PubMed PubMed Central

Frederick, R.L., Okamoto, K., and Shaw, J.M. (2008). Multiple pathways influence mitochondrial inheritance in budding yeast. Genetics 178, 825–837.10.1534/genetics.107.083055Search in Google Scholar PubMed PubMed Central

Galan, J.M., Wiederkehr, A., Seol, J.H., Haguenauer-Tsapis, R., Deshaies, R.J., Riezman, H., and Peter, M. (2001). Skp1p and the F-box protein Rcy1p form a non-SCF complex involved in recycling of the SNARE Snc1p in yeast. Mol. Cell. Biol. 21, 3105–3117.10.1128/MCB.21.9.3105-3117.2001Search in Google Scholar PubMed PubMed Central

Garcia-Rodriguez, L.J., Gay, A.C., and Pon, L.A. (2007). Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. J. Cell Biol. 176, 197–207.10.1083/jcb.200606054Search in Google Scholar PubMed PubMed Central

Goode, B.L. and Eck, M.J. (2007). Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 76, 593–627.10.1146/annurev.biochem.75.103004.142647Search in Google Scholar PubMed

Hammer 3rd, J.A. and Sellers, J.R. (2011). Walking to work: roles for class V myosins as cargo transporters. Nat Rev Mol Cell Biol 13, 13–26.10.1038/nrm3248Search in Google Scholar PubMed

Hammermeister, M., Schödel, K., and Westermann, B. (2010). Mdm36 is a mitochondrial fission-promoting protein in Saccharomyces cerevisiae. Mol. Biol. Cell 21, 2443–2452.10.1091/mbc.e10-02-0096Search in Google Scholar PubMed PubMed Central

Heil-Chapdelaine, R.A., Oberle, J.R., and Cooper, J.A. (2000). The cortical protein Num1p is essential for dynein-dependent interactions of microtubules with the cortex. J. Cell Biol. 151, 1337–1343.10.1083/jcb.151.6.1337Search in Google Scholar PubMed PubMed Central

Higuchi, R., Vevea, J.D., Swayne, T.C., Chojnowski, R., Hill, V., Boldogh, I.R., and Pon, L.A. (2013). Actin dynamics affect mitochondrial quality control and aging in budding yeast. Curr. Biol. 23, 2417–2422.10.1016/j.cub.2013.10.022Search in Google Scholar PubMed PubMed Central

Higuchi-Sanabria, R., Pernice, W.M., Vevea, J.D., Alessi Wolken, D.M., Boldogh, I.R., and Pon, L.A. (2014). Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 1133––1146.10.1111/1567-1364.12216Search in Google Scholar PubMed PubMed Central

Higuchi-Sanabria, R., Charalel, J.K., Viana, M.P., Garcia, E.J., Sing, C.N., Koenigsberg, A., Swayne, T.C., Vevea, J.D., Boldogh, I.R., Rafelski, S.M., et al. (2016). Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell 27, 776–787.10.1091/mbc.E15-07-0455Search in Google Scholar PubMed PubMed Central

Hill, S.M., Hanzen, S., and Nyström, T. (2017). Restricted access: spatial sequestration of damaged proteins during stress and aging. EMBO Rep. 18, 377–391.10.15252/embr.201643458Search in Google Scholar PubMed PubMed Central

Hoppins, S., Collins, S.R., Cassidy-Stone, A., Hummel, E., Devay, R.M., Lackner, L.L., Westermann, B., Schuldiner, M., Weissman, J.S., and Nunnari, J. (2011). A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol. 195, 323–340.10.1083/jcb.201107053Search in Google Scholar PubMed PubMed Central

Huckaba, T.M., Gay, A.C., Pantalena, L.F., Yang, H.C., and Pon, L.A. (2004). Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 167, 519–530.10.1083/jcb.200404173Search in Google Scholar PubMed PubMed Central

Itoh, T., Watabe, A., Toh-e, A., and Matsui, Y. (2002). Complex formation with Ypt11p, a rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 7744–7757.10.1128/MCB.22.22.7744-7757.2002Search in Google Scholar PubMed PubMed Central

Itoh, T., Toh-e, A., and Matsui, Y. (2004). Mmr1p is a mitochondrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast. EMBO J. 23, 2520–2530.10.1038/sj.emboj.7600271Search in Google Scholar PubMed PubMed Central

Jakobs, S., Martini, N., Schauss, A.C., Egner, A., Westermann, B., and Hell, S.W. (2003). Spatial and temporal dynamics of budding yeast mitochondria lacking the division component Fis1p. J. Cell Sci. 116, 2005–2014.10.1242/jcs.00423Search in Google Scholar PubMed

Ji, W.K., Hatch, A.L., Merrill, R.A., Strack, S., and Higgs, H.N. (2015). Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. eLife 4, e11553.10.7554/eLife.11553.040Search in Google Scholar

Jin, Y., Taylor Eves, P., Tang, F., and Weisman, L.S. (2009). PTC1 is required for vacuole inheritance and promotes the association of the myosin-V vacuole-specific receptor complex. Mol. Biol. Cell 20, 1312–1323.10.1091/mbc.e08-09-0954Search in Google Scholar PubMed PubMed Central

Jongsma, M.L., Berlin, I., and Neefjes, J. (2015). On the move: organelle dynamics during mitosis. Trends Cell Biol. 25, 112–124.10.1016/j.tcb.2014.10.005Search in Google Scholar PubMed

Kaeberlein, M. (2010). Lessons on longevity from budding yeast. Nature 464, 513–519.10.1038/nature08981Search in Google Scholar PubMed PubMed Central

Kanfer, G., Courtheoux, T., Peterka, M., Meier, S., Soste, M., Melnik, A., Reis, K., Aspenstrom, P., Peter, M., Picotti, P., et al. (2015). Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat. Commun. 6, 8015.10.1038/ncomms9015Search in Google Scholar PubMed PubMed Central

Kashatus, D.F., Lim, K.H., Brady, D.C., Pershing, N.L., Cox, A.D., and Counter, C.M. (2011). RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat. Cell Biol. 13, 1108–1115.10.1038/ncb2310Search in Google Scholar PubMed PubMed Central

Katajisto, P., Dohla, J., Chaffer, C.L., Pentinmikko, N., Marjanovic, N., Iqbal, S., Zoncu, R., Chen, W., Weinberg, R.A., and Sabatini, D.M. (2015). Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348, 340–343.10.1126/science.1260384Search in Google Scholar PubMed PubMed Central

Klecker, T., Scholz, D., Förtsch, J., and Westermann, B. (2013). The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture. J. Cell Sci. 126, 2924–2930.10.1242/jcs.126045Search in Google Scholar PubMed

Klecker, T., Böckler, S., and Westermann, B. (2014). Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol. 24, 537–545.10.1016/j.tcb.2014.04.004Search in Google Scholar PubMed

Klinger, H., Rinnerthaler, M., Lam, Y.T., Laun, P., Heeren, G., Klocker, A., Simon-Nobbe, B., Dickinson, J.R., Dawes, I.W., and Breitenbach, M. (2010). Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp. Gerontol. 45, 533–542.10.1016/j.exger.2010.03.016Search in Google Scholar PubMed

Knoblach, B. and Rachubinski, R.A. (2015). Sharing the cell’s bounty – organelle inheritance in yeast. J. Cell Sci. 128, 621–630.10.1242/jcs.151423Search in Google Scholar PubMed

Kondo-Okamoto, N., Ohkuni, K., Kitagawa, K., McCaffery, J.M., Shaw, J.M., and Okamoto, K. (2006). The novel F-box protein Mfb1p regulates mitochondrial connectivity and exhibits asymmetric localization in yeast. Mol. Biol. Cell 17, 3756–3767.10.1091/mbc.e06-02-0145Search in Google Scholar PubMed PubMed Central

Kormanec, J., Schaaf-Gerstenschläger, I., Zimmermann, F.K., Perecko, D., and Küntzel, H. (1991). Nuclear migration in Saccharomyces cerevisiae is controlled by the highly repetitive 313 kDa NUM1 protein. Mol. Gen. Genet. 230, 277–287.10.1007/BF00290678Search in Google Scholar PubMed

Kornmann, B., Currie, E., Collins, S.R., Schuldiner, M., Nunnari, J., Weissman, J.S., and Walter, P. (2009). An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481.10.1126/science.1175088Search in Google Scholar PubMed PubMed Central

Korobova, F., Ramabhadran, V., and Higgs, H.N. (2013). An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467.10.1126/science.1228360Search in Google Scholar PubMed PubMed Central

Kraft, L.M. and Lackner, L.L. (2017). Mitochondria-driven assembly of a cortical anchor for mitochondria and dynein. J. Cell Biol. 216, 3061–3071.10.1083/jcb.201702022Search in Google Scholar PubMed PubMed Central

Kraft, L.M. and Lackner, L.L. (2019). A conserved mechanism for mitochondria-dependent dynein anchoring. Mol. Biol. Cell 30, 691–702.10.1091/mbc.E18-07-0466Search in Google Scholar PubMed PubMed Central

Lackner, L.L. (2013). Determining the shape and cellular distribution of mitochondria: the integration of multiple activities. Curr. Opin. Cell Biol. 25, 471–476.10.1016/j.ceb.2013.02.011Search in Google Scholar PubMed

Lackner, L.L., Ping, H., Graef, M., Murley, A., and Nunnari, J. (2013). Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc. Natl. Acad. Sci. U.S.A. 110, E458–E467.10.1073/pnas.1215232110Search in Google Scholar PubMed PubMed Central

Lai, C.Y., Jaruga, E., Borghouts, C., and Jazwinski, S.M. (2002). A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162, 73–87.10.1093/genetics/162.1.73Search in Google Scholar PubMed PubMed Central

Lam, Y.T., Aung-Htut, M.T., Lim, Y.L., Yang, H., and Dawes, I.W. (2011). Changes in reactive oxygen species begin early during replicative aging of Saccharomyces cerevisiae cells. Free Radic Biol Med 50, 963–970.10.1016/j.freeradbiomed.2011.01.013Search in Google Scholar PubMed

Lawrence, E.J. and Mandato, C.A. (2013). Mitochondria localize to the cleavage furrow in mammalian cytokinesis. PLoS One 8, e72886.10.1371/journal.pone.0072886Search in Google Scholar PubMed PubMed Central

Lazzarino, D.A., Boldogh, I., Smith, M.G., Rosand, J., and Pon, L.A. (1994). Yeast mitochondria contain ATP-sensitive, reversible actin-binding activity. Mol. Biol. Cell 5, 807–818.10.1091/mbc.5.7.807Search in Google Scholar PubMed PubMed Central

Lewandowska, A., Macfarlane, J., and Shaw, J.M. (2013). Mitochondrial association, protein phosphorylation, and degradation regulate the availability of the active Rab GTPase Ypt11 for mitochondrial inheritance. Mol. Biol. Cell 24, 1185–1195.10.1091/mbc.e12-12-0848Search in Google Scholar PubMed PubMed Central

Li, X., Du, Y., Siegel, S., Ferro-Novick, S., and Novick, P. (2010). Activation of the mitogen-activated protein kinase, Slt2p, at bud tips blocks a late stage of endoplasmic reticulum inheritance in Saccharomyces cerevisiae. Mol. Biol. Cell 21, 1772–1782.10.1091/mbc.e09-06-0532Search in Google Scholar PubMed PubMed Central

Lillie, S.H. and Brown, S.S. (1994). Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J. Cell Biol. 125, 825–842.10.1083/jcb.125.4.825Search in Google Scholar

Lippuner, A.D., Julou, T., and Barral, Y. (2014). Budding yeast as a model organism to study the effects of age. FEMS Microbiol. Rev. 38, 300–325.10.1111/1574-6976.12060Search in Google Scholar

Loewen, C.J., Young, B.P., Tavassoli, S., and Levine, T.P. (2007). Inheritance of cortical ER in yeast is required for normal septin organization. J. Cell Biol. 179, 467–483.10.1083/jcb.200708205Search in Google Scholar

Manzano-Lopez, J., Matellan, L., Alvarez-Llamas, A., Blanco-Mira, J.C., and Monje-Casas, F. (2019). Asymmetric inheritance of spindle microtubule-organizing centres preserves replicative lifespan. Nat. Cell Biol. 21, 952–965.10.1038/s41556-019-0364-8Search in Google Scholar

Matsui, Y. (2003). Polarized distribution of intracellular components by class V myosins in Saccharomyces cerevisiae. Int. Rev. Cytol. 229, 1–42.10.1016/S0074-7696(03)29001-XSearch in Google Scholar

McFaline-Figueroa, J.R., Vevea, J., Swayne, T.C., Zhou, C., Liu, C., Leung, G., Boldogh, I.R., and Pon, L.A. (2011). Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell 10, 885–895.10.1111/j.1474-9726.2011.00731.xSearch in Google Scholar PubMed PubMed Central

Merz, S., Hammermeister, M., Altmann, K., Dürr, M., and Westermann, B. (2007). Molecular machinery of mitochondrial dynamics in yeast. Biol. Chem. 388, 917–926.10.1515/BC.2007.110Search in Google Scholar PubMed

Miller, S.B., Mogk, A., and Bukau, B. (2015). Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. J. Mol. Biol. 427, 1564–1574.10.1016/j.jmb.2015.02.006Search in Google Scholar PubMed

Mishra, P. and Chan, D.C. (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–646.10.1038/nrm3877Search in Google Scholar PubMed PubMed Central

Moore, D.L. and Jessberger, S. (2016). Creating age asymmetry: consequences of inheriting damaged goods in mammalian cells. Trends Cell Biol. 27, 82–92.10.1016/j.tcb.2016.09.007Search in Google Scholar PubMed

Moseley, J.B. and Goode, B.L. (2006). The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol. Mol. Biol. Rev. 70, 605–645.10.1128/MMBR.00013-06Search in Google Scholar PubMed PubMed Central

Nelson, D.E., Randle, S.J., and Laman, H. (2013). Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins. Open Biol 3, 130131.10.1098/rsob.130131Search in Google Scholar PubMed PubMed Central

Nyström, T. and Liu, B. (2014). The mystery of aging and rejuvenation – a budding topic. Curr. Opin. Microbiol. 18, 61–67.10.1016/j.mib.2014.02.003Search in Google Scholar PubMed

Oeding, S.J., Majstrowicz, K., Hu, X.P., Schwarz, V., Freitag, A., Honnert, U., Nikolaus, P., and Bähler, M. (2018). Identification of Miro1 and Miro2 as mitochondrial receptors for myosin XIX. J. Cell Sci. 131, jcs219469.10.1242/jcs.219469Search in Google Scholar PubMed

Ouellet, J. and Barral, Y. (2012). Organelle segregation during mitosis: lessons from asymmetrically dividing cells. J. Cell Biol. 196, 305–313.10.1083/jcb.201102078Search in Google Scholar PubMed PubMed Central

Peraza-Reyes, L., Crider, D.G., and Pon, L.A. (2010). Mitochondrial manoeuvres: Latest insights and hypotheses on mitochondrial partitioning during mitosis in Saccharomyces cerevisiae. Bioessays 10, 1040–1049.10.1002/bies.201000083Search in Google Scholar PubMed

Pernice, W.M., Vevea, J.D., and Pon, L.A. (2016). A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae. Nat. Commun. 7, 10595.10.1038/ncomms10595Search in Google Scholar PubMed PubMed Central

Ping, H.A., Kraft, L.M., Chen, W., Nilles, A.E., and Lackner, L.L. (2016). Num1 anchors mitochondria to the plasma membrane via two domains with different lipid binding specificities. J. Cell Biol. 213, 513–524.10.1083/jcb.201511021Search in Google Scholar PubMed PubMed Central

Pon, L.A. (2008). Golgi inheritance: rab rides the coat-tails. Curr. Biol. 18, R743–R745.10.1016/j.cub.2008.07.002Search in Google Scholar PubMed

Pruyne, D., Legesse-Miller, A., Gao, L., Dong, Y., and Bretscher,A. (2004). Mechanisms of polarized growth and organelle segregation in yeast. Annu. Rev. Cell Dev. Biol. 20, 559–591.10.1146/annurev.cellbio.20.010403.103108Search in Google Scholar PubMed

Quintero, O.A., DiVito, M.M., Adikes, R.C., Kortan, M.B., Case, L.B., Lier, A.J., Panaretos, N.S., Slater, S.Q., Rengarajan, M., Feliu, M., et al. (2009). Human Myo19 is a novel myosin that associates with mitochondria. Curr. Biol. 19, 2008–2013.10.1016/j.cub.2009.10.026Search in Google Scholar

Rafelski, S.M., Viana, M.P., Zhang, Y., Chan, Y.H., Thorn, K.S., Yam, P., Fung, J.C., Li, H., Costa Lda, F., and Marshall, W.F. (2012). Mitochondrial network size scaling in budding yeast. Science 338, 822–824.10.1126/science.1225720Search in Google Scholar

Reck-Peterson, S.L., Provance, D.W., Jr., Mooseker, M.S., and Mercer, J.A. (2000). Class V myosins. Biochim. Biophys. Acta 1496, 36–51.10.1016/S0167-4889(00)00007-0Search in Google Scholar

Rivolta, M.N. and Holley, M.C. (2002). Asymmetric segregation of mitochondria and mortalin correlates with the multi-lineage potential of inner ear sensory cell progenitors in vitro. Dev. Brain Res. 133, 49–56.10.1016/S0165-3806(01)00321-2Search in Google Scholar

Roeder, A.D., Hermann, G.J., Keegan, B.R., Thatcher, S.A., and Shaw, J.M. (1998). Mitochondrial inheritance is delayed in Saccharomyces cerevisiae cells lacking the serine/threonine phosphatase PTC1. Mol. Biol. Cell 9, 917–930.10.1091/mbc.9.4.917Search in Google Scholar PubMed PubMed Central

Ruan, L., Zhang, X., and Li, R. (2018). Recent insights into the cellular and molecular determinants of aging. J Cell Sci 131, jcs210831.10.1242/jcs.210831Search in Google Scholar PubMed PubMed Central

Sawyer, E.M., Joshi, P.R., Jorgensen, V., Yunus, J., Berchowitz, L.E., and Ünal, E. (2019). Developmental regulation of an organelle tether coordinates mitochondrial remodeling in meiosis. J. Cell Biol. 218, 559–579.10.1083/jcb.201807097Search in Google Scholar PubMed PubMed Central

Seabra, M.C. and Coudrier, E. (2004). Rab GTPases and myosin motors in organelle motility. Traffic 5, 393–399.10.1111/j.1398-9219.2004.00190.xSearch in Google Scholar PubMed

Sesaki, H. and Jensen, R.E. (1999). Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell Biol. 147, 699–706.10.1083/jcb.147.4.699Search in Google Scholar PubMed PubMed Central

Shepard, K.A., Gerber, A.P., Jambhekar, A., Takizawa, P.A., Brown, P.O., Herschlag, D., DeRisi, J.L., and Vale, R.D. (2003). Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc. Natl. Acad. Sci. U.S.A. 100, 11429–11434.10.1073/pnas.2033246100Search in Google Scholar PubMed PubMed Central

Simon, V.R., Swayne, T.C., and Pon, L.A. (1995). Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface. J. Cell Biol. 130, 345–354.10.1083/jcb.130.2.345Search in Google Scholar

Simon, V.R., Karmon, S.L., and Pon, L.A. (1997). Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae. Cell Motil. Cytoskel. 37, 199–210.10.1002/(SICI)1097-0169(1997)37:3<199::AID-CM2>3.0.CO;2-2Search in Google Scholar

Stevens, R.C. and Davis, T.N. (1998). Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae. J. Cell Biol. 142, 711–722.10.1083/jcb.142.3.711Search in Google Scholar

Swayne, T.C., Zhou, C., Boldogh, I.R., Charalel, J.K., McFaline-Figueroa, J.R., Thoms, S., Yang, C., Leung, G., McInnes, J., Erdmann, R., et al. (2011). Role for cER and Mmr1p in anchorage of mitochondria at sites of polarized surface growth in budding yeast. Curr. Biol. 21, 1994–1999.10.1016/j.cub.2011.10.019Search in Google Scholar

Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521–11529.10.1074/jbc.M607279200Search in Google Scholar

Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A., and Hirokawa, N. (1998). Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147–1158.10.1016/S0092-8674(00)81459-2Search in Google Scholar

Tang, X., Punch, J.J., and Lee, W.L. (2009). A CAAX motif can compensate for the PH domain of Num1 for cortical dynein attachment. Cell Cycle 8, 3182–3190.10.4161/cc.8.19.9731Search in Google Scholar

Tang, K., Li, Y., Yu, C., and Wei, Z. (2019). Structural mechanism for versatile cargo recognition by the yeast class V myosin Myo2. J. Biol. Chem. 294, 5896–5906.10.1074/jbc.RA119.007550Search in Google Scholar

Trybus, K.M. (2008). Myosin V from head to tail. Cell. Mol. Life Sci. 65, 1378–1389.10.1007/s00018-008-7507-6Search in Google Scholar

Vevea, J.D., Swayne, T.C., Boldogh, I.R., and Pon, L.A. (2014). Inheritance of the fittest mitochondria in yeast. Trends Cell Biol. 24, 53–60.10.1016/j.tcb.2013.07.003Search in Google Scholar

Warren, G. and Wickner, W. (1996). Organelle inheritance. Cell 84, 395–400.10.1016/S0092-8674(00)81284-2Search in Google Scholar

Weisman, L.S. (2006). Organelles on the move: insights from yeast vacuole inheritance. Nat. Rev. Mol. Cell Biol. 7, 243–252.10.1038/nrm1892Search in Google Scholar

Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884.10.1038/nrm3013Search in Google Scholar

Westermann, B. (2014). Mitochondrial inheritance in yeast. Biochim. Biophys. Acta 1837, 1039–1046.10.1016/j.bbabio.2013.10.005Search in Google Scholar

Westermann, B. (2015). The mitochondria-plasma membrane contact site. Curr. Opin. Cell Biol. 35, 1–6.10.1016/j.ceb.2015.03.001Search in Google Scholar

Xu, L. and Bretscher, A. (2014). Rapid glucose depletion immobilizes active myosin V on stabilized actin cables. Curr. Biol. 24, 2471–2479.10.1016/j.cub.2014.09.017Search in Google Scholar

Yang, H.C., Palazzo, A., Swayne, T.C., and Pon, L.A. (1999). A retention mechanism for distribution of mitochondria during cell division in budding yeast. Curr. Biol. 9, 1111–1114.10.1016/S0960-9822(99)80480-1Search in Google Scholar

Yu, J.W., Mendrola, J.M., Audhya, A., Singh, S., Keleti, D., DeWald, D.B., Murray, D., Emr, S.D., and Lemmon, M.A. (2004). Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol. Cell 13, 677–688.10.1016/S1097-2765(04)00083-8Search in Google Scholar

Zhou, C., Slaughter, B.D., Unruh, J.R., Guo, F., Yu, Z., Mickey, K., Narkar, A., Ross, R.T., McClain, M., and Li, R. (2014). Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell 159, 530–542.10.1016/j.cell.2014.09.026Search in Google Scholar PubMed PubMed Central

Received: 2019-12-18
Accepted: 2020-01-15
Published Online: 2020-02-18
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0439/html
Scroll to top button