Skip to main content
Log in

Ontological Dimensions of Cognitive-Neural Mappings

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The growing literature reporting results of cognitive-neural mappings has increased calls for an adequate organizing ontology, or taxonomy, of these mappings. This enterprise is non-trivial, as relevant dimensions that might contribute to such an ontology are not yet agreed upon. We propose that any candidate dimensions should be evaluated on their ability to explain observed differences in functional neuroimaging activation patterns. In this study, we use a large sample of task-based functional magnetic resonance imaging (task-fMRI) results and a data-driven strategy to identify these dimensions. First, using a data-driven dimension reduction approach and multivariate distance matrix regression (MDMR), we quantify the variance among activation maps that is explained by existing ontological dimensions. We find that ‘task paradigm’ categories explain more variance among task-activation maps than other dimensions, including latent cognitive categories. Surprisingly, ‘study ID’, or the study from which each activation map was reported, explained close to 50% of the variance in activation patterns. Using a clustering approach that allows for overlapping clusters, we derived data-driven latent activation states, associated with re-occurring configurations of the canonical frontoparietal, salience, sensory-motor, and default mode network activation patterns. Importantly, with only four data-driven latent dimensions, one can explain greater variance among activation maps than all conventional ontological dimensions combined. These latent dimensions may inform a data-driven cognitive ontology, and suggest that current descriptions of cognitive processes and the tasks used to elicit them do not accurately reflect activation patterns commonly observed in the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bolt, T., Nomi, J. S., Yeo, B. T. T., & Uddin, L. Q. (2017). Data-driven extraction of a nested model of human brain function. J Neurosci, 37, 7263–7277.

    Article  CAS  Google Scholar 

  • Boutsidis, C., & Gallopoulos, E. (2008). SVD based initialization: A head start for nonnegative matrix factorization. Pattern Recogn, 41, 1350–1362.

    Article  Google Scholar 

  • Dhillon, I. S., & Modha, D. S. (2001). Concept decompositions for large sparse text data using clustering. Mach Learn, 42, 143–175.

    Article  Google Scholar 

  • Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci, 113, 7900–7905.

    Article  CAS  Google Scholar 

  • Fox, P. T., & Lancaster, J. L. (2002). Mapping context and content: The BrainMap model. Nat Rev Neurosci, 3, 319–321.

    Article  CAS  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., van Essen, D., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A, 102, 9673–9678.

    Article  CAS  Google Scholar 

  • Friedman, L., Kenny, J. T., Wise, A. L., Wu, D., Stuve, T. A., Miller, D. A., Jesberger, J. A., & Lewin, J. S. (1998). Brain activation during silent word generation evaluated with functional MRI. Brain Lang, 64, 231–256.

    Article  CAS  Google Scholar 

  • Garcia, D. (2010). Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal, 54, 1167–1178.

    Article  Google Scholar 

  • Gorgolewski, K. J. et al. (2015) NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Front. Neuroinformatics9, 8.

  • Hastings, J. et al. (2014) Interdisciplinary perspectives on the development, integration, and application of cognitive ontologies. Front. Neuroinformatics 8

  • Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2425–2430.

    Article  CAS  Google Scholar 

  • Kim, J., & Park, H. (2011). Fast nonnegative matrix factorization: An active-set-like method and comparisons. SIAM J Sci Comput, 33, 3261–3281.

    Article  Google Scholar 

  • Kuang, D., Ding, C. & Park, H. Symmetric Nonnegative Matrix Factorization for Graph Clustering. in Proceedings of the 2012 SIAM International Conference on Data Mining 106–117 (Society for Industrial and Applied Mathematics, 2012). doi:https://doi.org/10.1137/1.9781611972825.10

  • Laird, A. R., et al. (2015). Neural architecture underlying classification of face perception paradigms. NeuroImage, 119, 70–80.

    Article  Google Scholar 

  • Lancaster, J. L., Tordesillas-Gutiérrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., Mazziotta, J. C., & Fox, P. T. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp, 28, 1194–1205.

    Article  Google Scholar 

  • Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791.

    Article  CAS  Google Scholar 

  • Lohmann, G., Volz, K. G., & Ullsperger, M. (2007). Using non-negative matrix factorization for single-trial analysis of fMRI data. NeuroImage, 37, 1148–1160.

    Article  Google Scholar 

  • Poldrack, R. A., et al. (2011). The cognitive atlas: Toward a knowledge foundation for cognitive neuroscience. Front Neuroinformatics, 5, 17.

    Article  Google Scholar 

  • Poldrack, R. A. et al. (2012) Discovering relations between mind, brain, and mental disorders using topic mapping. PLoS Comput Biol 8

  • Raichle, M. E., et al. (2001). A default mode of brain function. Proc Natl Acad Sci, 98, 676–682.

    Article  CAS  Google Scholar 

  • Ray, K. L. et al. (2013) ICA model order selection of task co-activation networks. Front Neurosci 7

  • Rubin, T. N., et al. (2017). Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition. PLoS Comput Biol, 13, e1005649.

    Article  Google Scholar 

  • Schmitz, R. J., Schultz, M. D., Lewsey, M. G., O'Malley, R. C., Urich, M. A., Libiger, O., Schork, N. J., & Ecker, J. R. (2011). Transgenerational epigenetic instability is a source of novel methylation variants. Science, 334, 369–373.

    Article  CAS  Google Scholar 

  • Shehzad, Z., et al. (2014). An multivariate distance-based analytic framework for Connectome-wide association studies. NeuroImage, 93, 74–94.

    Article  Google Scholar 

  • Shirkhorshidi, A. S., Aghabozorgi, S., & Wah, T. Y. (2015). A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS One, 10, e0144059.

    Article  Google Scholar 

  • Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., & Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A, 106, 13040–13045.

    Article  CAS  Google Scholar 

  • Sotiras, A., Resnick, S. M., & Davatzikos, C. (2015). Finding imaging patterns of structural covariance via non-negative matrix factorization. NeuroImage, 108, 1–16.

    Article  Google Scholar 

  • Stroop, J. (1935). Studies of interference in serial verbal reactions. J Exp Psychol, 18, 643–662.

    Article  Google Scholar 

  • Toro, R., Fox, P. T., & Paus, T. (2008). Functional Coactivation map of the human brain. Cereb Cortex N Y NY, 18, 2553–2559.

    Article  Google Scholar 

  • Turner, J. A., & Laird, A. R. (2012). The cognitive paradigm ontology: Design and application. Neuroinformatics, 10, 57–66.

    Article  Google Scholar 

  • Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci, 16, 55–61.

    Article  CAS  Google Scholar 

  • Uddin, L. Q., Yeo, B. T. T., Spreng, R. N. (2019) Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks. Brain Topography 32 (6):926-942

  • Wu, S., et al. (2016). Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks. Proc Natl Acad Sci, 113, 4290–4295.

    Article  CAS  Google Scholar 

  • Yeo, B. T. T., et al. (2015). Functional specialization and flexibility in human association cortex. Cereb Cortex N Y N, 1991(25), 3654–3672.

    Article  Google Scholar 

  • Zapala, M. A., & Schork, N. J. (2006). Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc Natl Acad Sci, 103, 19430–19435.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Peter Fox for providing access to the BrainMap database. This work was supported by award R01MH107549 from the National Institute of Mental Health to LQU and award 1631325 from the National Science Foundation to ARL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taylor Bolt or Lucina Q. Uddin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolt, T., Nomi, J.S., Arens, R. et al. Ontological Dimensions of Cognitive-Neural Mappings. Neuroinform 18, 451–463 (2020). https://doi.org/10.1007/s12021-020-09454-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-020-09454-y

Keywords

Navigation