Skip to main content

Advertisement

Log in

Context-Dependent Functions of E2F1: Cell Cycle, Cell Death, and DNA Damage Repair in Cortical Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

DNA damage has been reported to induce cell cycle–related neuronal death. This is significant as aberrant cell cycle re-entry of mature, post-mitotic neurons contributes to neurodegeneration. In this study, we investigate how DNA damage elicited by exposure to the topoisomerase I inhibitor camptothecin (CPT) leads to cycle-related death of cultured cortical neurons and examine the function of E2F1 in this process. CPT treatment induced cell cycle initiation of cortical neurons and elevated the expression of certain cell cycle components (e.g., cyclin D1, CDK4, E2F1) but failed to drive S phase entry or DNA synthesis. The arrest in the cell cycle is explained by the elevated expression of the CDK inhibitor p21Cip1. Though its level was increased after CPT treatment, E2F1 did not drive treated neurons into the G1-S phase transition. E2F1 overexpression led to cell cycle activation and acute neuronal apoptosis without detectable entry of the neurons into S phase. ChIPseq analysis demonstrated that E2F1 predominantly occupies positions on or near the promoters of cell cycle related genes. Instead, in CPT-treated neurons, E2F1 preferentially regulated DNA repair related genes. Our study reveals that the functions of E2F1 in postmitotic neurons are context-dependent and offers novel insights into the role of E2F1 in DNA damage induced cycle-related neuronal death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feddersen RM, Ehlenfeldt R, Yunis WS, Clark HB, Orr HT (1992) Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice. Neuron 9:955–966

    CAS  PubMed  Google Scholar 

  2. al-Ubaidi MR, Hollyfield JG, Overbeek PA, Baehr W (1992) Photoreceptor degeneration induced by the expression of simian virus 40 large tumor antigen in the retina of transgenic mice. Proc Natl Acad Sci U S A 89:1194–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294

    CAS  PubMed  Google Scholar 

  4. Macleod KF, Hu Y, Jacks T (1996) Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J 15:6178–6188

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Freeman RS, Estus S, Johnson EM Jr (1994) Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin D1 during programmed cell death. Neuron 12:343–355

    CAS  PubMed  Google Scholar 

  6. Konishi Y, Bonni A (2003) The E2F-Cdc2 cell-cycle pathway specifically mediates activity deprivation-induced apoptosis of postmitotic neurons. J Neurosci 23:1649–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Padmanabhan J, Park DS, Greene LA, Shelanski ML (1999) Role of cell cycle regulatory proteins in cerebellar granule neuron apoptosis. J Neurosci 19:8747–8756

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, Canonico PL, Nicoletti F et al (1999) Mitotic signaling by beta-amyloid causes neuronal death. FASEB J 13:2225–2234

    CAS  PubMed  Google Scholar 

  9. Varvel NH, Bhaskar K, Patil AR, Pimplikar SW, Herrup K, Lamb BT (2008) Abeta oligomers induce neuronal cell cycle events in Alzheimer’s disease. J Neurosci 28:10786–10793

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Seward ME, Swanson E, Norambuena A, Reimann A, Cochran JN, Li R, Roberson ED, Bloom GS (2013) Amyloid-beta signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J Cell Sci 126:1278–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ, Emokpae R Jr, Gorospe M et al (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41:549–561

    CAS  PubMed  Google Scholar 

  12. Wu Q, Combs C, Cannady SB, Geldmacher DS, Herrup K (2000) Beta-amyloid activated microglia induce cell cycling and cell death in cultured cortical neurons. Neurobiol Aging 21:797–806

    CAS  PubMed  Google Scholar 

  13. Park DS, Obeidat A, Giovanni A, Greene LA (2000) Cell cycle regulators in neuronal death evoked by excitotoxic stress: implications for neurodegeneration and its treatment. Neurobiol Aging 21:771–781

    CAS  PubMed  Google Scholar 

  14. O’Hare MJ, Hou ST, Morris EJ, Cregan SP, Xu Q, Slack RS, Park DS (2000) Induction and modulation of cerebellar granule neuron death by E2F-1. J Biol Chem 275:25358–25364

    PubMed  Google Scholar 

  15. Biswas SC, Liu DX, Greene LA (2005) Bim is a direct target of a neuronal E2F-dependent apoptotic pathway. J Neurosci 25:8349–8358

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Biswas SC, Shi Y, Vonsattel JP, Leung CL, Troy CM, Greene LA (2007) Bim is elevated in Alzheimer’s disease neurons and is required for beta-amyloid-induced neuronal apoptosis. J Neurosci 27:893–900

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu DX, Greene LA (2001) Regulation of neuronal survival and death by E2F-dependent gene repression and derepression. Neuron 32:425–438

    CAS  PubMed  Google Scholar 

  18. Park DS, Morris EJ, Padmanabhan J, Shelanski ML, Geller HM, Greene LA (1998) Cyclin-dependent kinases participate in death of neurons evoked by DNA-damaging agents. J Cell Biol 143:457–467

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwartz EI, Smilenov LB, Price MA, Osredkar T, Baker RA, Ghosh S, Shi FD, Vollmer TL et al (2007) Cell cycle activation in postmitotic neurons is essential for DNA repair. Cell Cycle 6:318–329

    CAS  PubMed  Google Scholar 

  20. Tomashevski A, Webster DR, Grammas P, Gorospe M, Kruman II (2010) Cyclin-C-dependent cell-cycle entry is required for activation of non-homologous end joining DNA repair in postmitotic neurons. Cell Death Differ 17:1189–1198

    CAS  PubMed  Google Scholar 

  21. Hui CW, Zhang Y, Herrup K (2016) Non-neuronal cells are required to mediate the effects of neuroinflammation: results from a neuron-enriched culture system. PLoS One 11:e0147134

    PubMed  PubMed Central  Google Scholar 

  22. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    PubMed  PubMed Central  Google Scholar 

  24. Yu G, Wang LG, He QY (2015) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31:2382–2383

    CAS  PubMed  Google Scholar 

  25. Shen L, Shao N, Liu X, Nestler E (2014) ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 15:284

    PubMed  PubMed Central  Google Scholar 

  26. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ryan AJ, Squires S, Strutt HL, Johnson RT (1991) Camptothecin cytotoxicity in mammalian cells is associated with the induction of persistent double strand breaks in replicating DNA. Nucleic Acids Res 19:3295–3300

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    CAS  PubMed  Google Scholar 

  29. Morris EJ, Geller HM (1996) Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity. J Cell Biol 134:757–770

    CAS  PubMed  Google Scholar 

  30. Marinello J, Chillemi G, Bueno S, Manzo SG, Capranico G (2013) Antisense transcripts enhanced by camptothecin at divergent CpG-island promoters associated with bursts of topoisomerase I-DNA cleavage complex and R-loop formation. Nucleic Acids Res 41:10110–10123

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM (2000) Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 275:9390–9395

    CAS  PubMed  Google Scholar 

  32. Banath JP, Macphail SH, Olive PL (2004) Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res 64:7144–7149

    CAS  PubMed  Google Scholar 

  33. Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, Devidze N, Kreitzer AC et al (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-beta. Nat Neurosci 16:613–621

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15:7–18

    CAS  PubMed  Google Scholar 

  35. Park DS, Morris EJ, Greene LA, Geller HM (1997) G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J Neurosci 17:1256–1270

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Park DS, Morris EJ, Bremner R, Keramaris E, Padmanabhan J, Rosenbaum M, Shelanski ML, Geller HM et al (2000) Involvement of retinoblastoma family members and E2F/DP complexes in the death of neurons evoked by DNA damage. J Neurosci 20:3104–3114

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen J, Saha P, Kornbluth S, Dynlacht BD, Dutta A (1996) Cyclin-binding motifs are essential for the function of p21CIP1. Mol Cell Biol 16:4673–4682

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chow HM, Herrup K (2015) Genomic integrity and the ageing brain. Nat Rev Neurosci 16:672–684

    CAS  PubMed  Google Scholar 

  39. Johnson DG, Schwarz JK, Cress WD, Nevins JR (1993) Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365:349–352

    CAS  PubMed  Google Scholar 

  40. Cicero S, Herrup K (2005) Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation. J Neurosci 25:9658–9668

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang J, Herrup K (2011) Nucleocytoplasmic Cdk5 is involved in neuronal cell cycle and death in post-mitotic neurons. Cell Cycle 10:1208–1214

    CAS  PubMed  Google Scholar 

  42. Busser J, Geldmacher DS, Herrup K (1998) Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci 18:2801–2807

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Y, Qu D, Morris EJ, O’Hare MJ, Callaghan SM, Slack RS, Geller HM, Park DS (2006) The Chk1/Cdc25A pathway as activators of the cell cycle in neuronal death induced by camptothecin. J Neurosci 26:8819–8828

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P (2005) Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25:5446–5454

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    CAS  PubMed  Google Scholar 

  46. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450

    CAS  PubMed  Google Scholar 

  47. Pagano M, Theodoras AM, Tam SW, Draetta GF (1994) Cyclin D1-mediated inhibition of repair and replicative DNA synthesis in human fibroblasts. Genes Dev 8:1627–1639

    CAS  PubMed  Google Scholar 

  48. Kranenburg O, van der Eb AJ, Zantema A (1996) Cyclin D1 is an essential mediator of apoptotic neuronal cell death. EMBO J 15:46–54

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, Zagozdzon A, Goswami T et al (2011) A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 474:230–234

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hofferer M, Wirbelauer C, Humar B, Krek W (1999) Increased levels of E2F-1-dependent DNA binding activity after UV- or gamma-irradiation. Nucleic Acids Res 27:491–495

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L, Porcellini A, Screpanti I et al (2003) Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5:552–558

    CAS  PubMed  Google Scholar 

  52. Stevens C, Smith L, La Thangue NB (2003) Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5:401–409

    CAS  PubMed  Google Scholar 

  53. Lin WC, Lin FT, Nevins JR (2001) Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 15:1833–1844

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen J, Zhu F, Weaks RL, Biswas AK, Guo R, Li Y, Johnson DG (2011) E2F1 promotes the recruitment of DNA repair factors to sites of DNA double-strand breaks. Cell Cycle 10:1287–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo R, Chen J, Zhu F, Biswas AK, Berton TR, Mitchell DL, Johnson DG (2010) E2F1 localizes to sites of UV-induced DNA damage to enhance nucleotide excision repair. J Biol Chem 285:19308–19315

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, Dynlacht BD (2002) E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16:245–256

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shats I, Deng M, Davidovich A, Zhang C, Kwon JS, Manandhar D, Gordan R, Yao G et al (2017) Expression level is a key determinant of E2F1-mediated cell fate. Cell Death Differ 24:626–637

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hiu Tung Cheung and Ms. Pui Shuen Wong for the help with ChIPseq experiment.

Funding

This work is supported by grants from the Research Grants Council (RGC) of the Hong Kong SAR (16101315, 660813, AoE/M-604/16). Additional support was received from the Hong Kong University of Science and Technology (R9321).

Author information

Authors and Affiliations

Authors

Contributions

YZ and KH designed the study. YZ and XS conducted experiments. YZ, XS, and KH wrote and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Karl Herrup.

Ethics declarations

Competing Interests

The authors declare that they have no competing interest.

Ethics Approval

All animal procedures were approved by Animal and Plant Care Facility of Hong Kong University of Science and Technology.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(XLSX 20 kb).

ESM 2

(PDF 1632 kb).

ESM 3

(PDF 2705 kb).

ESM 4

(DOCX 15 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Song, X. & Herrup, K. Context-Dependent Functions of E2F1: Cell Cycle, Cell Death, and DNA Damage Repair in Cortical Neurons. Mol Neurobiol 57, 2377–2390 (2020). https://doi.org/10.1007/s12035-020-01887-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01887-5

Keywords

Navigation