Skip to main content
Log in

Sugar transporter genes in grass carp (Ctenopharyngodon idellus): molecular cloning, characterization, and expression in response to different stocking densities

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Glucose and fructose play a central role in the metabolism and cellular homeostasis of organisms. Their absorption is co-mediated by two families of glucose transporters, Na+-coupled glucose co-transporters (SGLTs) and facilitative Na+-independent sugar carriers (GLUTs), in the intestine. However, limited information has been available on these transporters in fish. Therefore, we studied glut2, sglt1, and sglt4 genes in grass carp (Ctenopharyngodon idellus). The full-length cDNAs of glut2 was 2308 bp, with an open reading frame (ORF) of 503 amino acids (AAs). The full-length cDNAs of sglt1 was 2890 bp, with an ORF of 658 AAs. Additionally, the full-length cDNAs of sglt4 was 2090 bp, with an ORF encoding 659 AAs. The three deduced AA sequences showed high homology between grass carp and other cyprinid fish species. Based on homology modeling, three-dimensional models of GLUT2, SGLT1, and SGLT4 proteins were created and transmembrane domains were noted. glut2, sglt1, and sglt4 were abundantly expressed in the anterior and mid intestine. In particular, glut2 was markedly expressed in liver (P < 0.05). Additionally, the results indicated that different stocking densities (0.9 or 5.9 kg m−2) did not alter intestinal section-dependent expression patterns of the three transporter genes. However, high stocking density impacted segmental mRNA expression levels. This work demonstrated that mRNA expression of sugar transporter genes in the fish intestine was segment specific, and crowding stress may affect the activity of intestinal sugar transporters. These results provided new insights into the relationship between crowding stress and intestinal sugar transporters in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    CAS  PubMed  Google Scholar 

  • Bauer PV, Duca FA, Tmz W, Rasmussen BA, Abraham MA, Dranse HJ, Puri A, O’Brien CA, Lam TKT (2018) Metformin alters upper small intestinal microbiota that impact a glucose SGLT1-sensing glucoregulatory pathway. Cell Metab 27:101–117

    CAS  PubMed  Google Scholar 

  • Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S (1990) Molecular biology of mammalian glucose transporters. Diabetes Care 13:198–208

    CAS  PubMed  Google Scholar 

  • Blanco AM, Bertucci JI, Ramesh N, Delgado MJ, Valenciano AI, Unniappan S (2017) Ghrelin facilitates GLUT2-, SGLT1- and SGLT2-mediated intestinal glucose transport in goldfish (Carassius auratus). Sci Rep 7:45024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caccia S, Casartelli M, Grimaldi A, Losa E, de Eguileor M, Pennacchio F, Giodana B (2007) Unexpected similarity of intestinal sugar absorption by SGLT1 and apical GLUT2 in an insect (Aphidius ervi, hymenoptera) and mammals. Am J Physiol-Reg I 292:2284–2291

    Google Scholar 

  • Castillo J, Crespo D, Capilla E, Díaz M, Chauvigné F, Cerdà J, Planas JV (2009) Evolutionary structural and functional conservation of an ortholog of the GLUT2 glucose transporter gene (SLC2A2) in zebrafish. Am J Physiol-Reg I 297:1570–1581

    Google Scholar 

  • Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB (2015) Transport of sugars. Annu Rev Biochem 84:865–894

    CAS  PubMed  Google Scholar 

  • Con P, Nitzan T, Cnaani A (2017) Salinity-dependent shift in the localization of three peptide transporters along the intestine of the Mozambique Tilapia (Oreochromis mossambicus). Front Physiol 8:8

    PubMed  PubMed Central  Google Scholar 

  • Coon S, Kekuda R, Saha P, Sundaram U (2011) Reciprocal regulation of the primary sodium absorptive pathways in rat intestinal epithelial cells. Am J Physiol-Cell Ph 300:496–505

    Google Scholar 

  • Deng D, Yan N (2016) GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci 25:546–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giugliano D, Ceriello A, Esposito K (2008) Glucose metabolism and hyperglycemia. Am J Clin Nutr 87:217S–222S

    CAS  PubMed  Google Scholar 

  • Hirayama BA, Loo DD, Díez-Sampedro A, Leung DW, Meinild AK, Lai-Bing M, Turk E, Wright EM (2007) Sodium-dependent reorganization of the sugar-binding site of SGLT1. Biochemistry 46:13391–13406

    CAS  PubMed  Google Scholar 

  • Hu W, Mai KS, Luo Z, Zheng JL, Chen QL, Pan YX (2017) Effect of waterborne copper on lipid metabolism in hepatopancreas and muscle of grass carp Ctenopharyngodon idella. Aquac Res 48:1458–1468

    CAS  Google Scholar 

  • Kamalam BS, Medale F, Panserat S (2017) Utilisation of dietary carbohydrates in farmed fishes: new insights on influencing factors, biological limitations and future strategies. Aquaculture 467:3–27

    CAS  Google Scholar 

  • Katagiri H, Asano T, Ishihara H, Tsukuda K, Lin JL, Inukai K, Kikuchi M, Yazaki Y, Oka Y (1992) Replacement of intracellular C-terminal domain of GLUT1 glucose transporter with that of GLUT2 increases Vmax and Km of transport activity. J Biol Chem 267:22550–22555

    CAS  PubMed  Google Scholar 

  • Leturque A, Brot-Laroche E, Le Gall M, Stolarczyk E, Tobin V (2005) The role of GLUT2 in dietary sugar handling. J Physiol Biochem 61:529–537

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    CAS  Google Scholar 

  • Marks J, Carvou NJ, Debnam ES, Srai SK, Unwin RJ (2003) Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J Physiol-London 553:137–145

    CAS  PubMed  Google Scholar 

  • Martínez-Quintana JA, Yepiz-Plascencia G (2012) Glucose and other hexoses transporters in marine invertebrates: a mini review. Electron J Biotechnol 15:16

    Google Scholar 

  • Moon TW (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Phys B Biochem Mol Biol 129:243–249

    CAS  Google Scholar 

  • Navale AM, Paranjape AN (2016) Glucose transporters: physiological and pathological roles. Biophys Rev 8:1–5

    Google Scholar 

  • Nie GX, Hou CX, Wang JL, Zhang JX, Song DY, Wang B, Li XJ, Kong XH (2011) Molecular cloning and sequence analysis of sglt1 and tertiary structure prediction of deduced protein in Cyprinus carpio L. Life Sci J 8:204–212

    Google Scholar 

  • Obi IE, Sterling KM, Ahearn GA (2011) Transepithelial D-glucose and D-fructose transport across the American lobster, Homarus americanus, intestine. J Exp Biol 214:2337–2344

    CAS  PubMed  Google Scholar 

  • Ochieng’Aketch B, Oyieng’Ang’ienda P, Radull JO, Waindi EN (2014) Effect of stocking density on the expression of glucose transporter protein 1 and other physiological factors in the Lake Victoria Nile tilapia, Oreochromis niloticus (L.). Int Aquat Res 6:69

  • Ostrowska M, Jarczak J, Zwierzchowski L (2015) Glucose transporters in cattle - a review. Anim Sci Pap Rep 33:191–212

    CAS  Google Scholar 

  • Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol B 182:1015–1045

    CAS  PubMed  Google Scholar 

  • Qi C, Xie C, Tang R, Qin X, Wang D, Li D (2016) Effect of stocking density on growth, physiological responses, and body composition of juvenile blunt snout bream, Megalobrama amblycephala. J World Aquacult Soc 47:358–368

    CAS  Google Scholar 

  • Röder PV, Geillinger KE, Zietek TS, Bernard T, Hermann K, Hannelore D (2014) The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One 9:89977

    Google Scholar 

  • Schürmann A, Doege H, Ohnimus H, Monser V, Buchs A, Joost HG (1997) Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters (GLUT) for transporter function. Biochemistry 36:12897–12902

    PubMed  Google Scholar 

  • Shikata T, Iwanaga S, Shimeno S (1994) Effects of dietary glucose, fructose, and galactose on hepatopancreatic enzyme activities and body composition in carp. Fisheries Sci 60:613–617

    CAS  Google Scholar 

  • Sterling KM, Ahearn GA (2011) Glucose and fructose uptake by Limulus polyphemus hepatopancreatic brush border and basolateral membrane vesicles: evidence for Na+-dependent sugar transport activity. J Comp Physiol B 181:467–475

    CAS  PubMed  Google Scholar 

  • Sun YQ, Liang X, Chen J, Tang R, Li L, Li DP (2018) Change in ubiquitin proteasome system of grass carp Ctenopharyngodon idellus reared in the different stocking densities. Fronti Physiol 9:837

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tazawa S, Yamato T, Fujikura H, Hiratochi M, Itoh F, Tomae M, Takemura Y, Maruyama H, Sugiyama T, Wakamatsu A, Isogai T, Isajia M (2005) SLC5A9/SGLT4, a new Na+ −dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-d-glucitol, and fructose. Life Sci 76:1039–1050

    CAS  PubMed  Google Scholar 

  • Terova G, Rimoldi S, Parisi G, Gasco L, Pais A, Bernardini G (2009) Molecular cloning and gene expression analysis in aquaculture science: a review focusing on respiration and immune responses in European sea bass (Dicentrarchus labrax). Rev Fish Biol Fisher 23:175–194

    Google Scholar 

  • Thorens B (2015) GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58:221–232

    CAS  PubMed  Google Scholar 

  • Trenzado CE, Morales AE, de la Higuera M (2006) Physiological effects of crowding in rainbow trout, Oncorhynchus mykiss, selected for low and high stress responsiveness. Aquaculture 258:583–593

    Google Scholar 

  • Uldry M, Thorens B (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflüg Arch Eur J Phy 447:480–489

    CAS  Google Scholar 

  • Wang YR, Li EC, Yu N, Wang XD, Cai CF, Tang BP, Chen LQ, Wormhoudt AV (2012) Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis. PLoS One 7:e37316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Brit J Nutr 89:3–9

    CAS  PubMed  Google Scholar 

  • Wright EM, Ghezzi C, Loo DD (2017) Novel and unexpected functions of SGLTs. Physiology 32:435–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright EM, Hirayama BA, Loo DF (2007) Active sugar transport in health and disease. J Intern Med 261:32–43

    CAS  PubMed  Google Scholar 

  • Wright EM, Turk E (2004) The sodium/glucose cotransport family SLC5. Pflüg Arch Eur J Phy 447:510–518

    CAS  Google Scholar 

  • Wu L, Fritz JD, Powers AC (1998) Different functional domains of GLUT2 glucose transporter are required for glucose affinity and substrate specificity. Endocrinology 139:4205–4212

    CAS  PubMed  Google Scholar 

  • Xiao C, Liu Z, Li D, Refaey MM, Tang R, Li L, Zhang X (2017) Acute nitrite exposure alters the metabolism of thyroid hormones in grass carp (Ctenopharyngodon idellus). Chemosphere 186:798–804

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Earmarked Fund for China Agriculture Research System (Project no. CARS-45), the National Natural Foundation of China (Project no. 31502140) and the Fundamental Research Funds for the Central Universities (Project no. 2662015PY119).

Author information

Authors and Affiliations

Authors

Contributions

X.L. performed the experiment, analyzed data, and wrote the manuscript; F.Y., M.X., H.W., and K.O. cultured the fish and analyzed the growth data; G.Y., R.T., L.L., X.Z., W.C., M.P., M.F., and A.G. revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dapeng Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Yan, F., Gao, Y. et al. Sugar transporter genes in grass carp (Ctenopharyngodon idellus): molecular cloning, characterization, and expression in response to different stocking densities. Fish Physiol Biochem 46, 1039–1052 (2020). https://doi.org/10.1007/s10695-020-00770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-020-00770-3

Keywords

Navigation