Skip to main content

Advertisement

Log in

The physiological and pathological roles and applications of sialyl Lewis x, a common carbohydrate ligand of the three selectins

  • Comprehensive Review Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In the past decades, the roles of carbohydrates in living organisms and their potential use in many fields have been extensively investigated. Sialyl Lewis x (sLex), a member of body carbohydrate, is an inherent blood-type tetrasaccharide on the surface of different cells, the lymphocyte, neutrophil, some T cells, multiple tumor cells and so on. SLex is a common ligand of the three selectins, L-selectin, E-selectin and P-selectin, and plays important roles in multiple physiological phenomenas by interacting with selectins. Under normal physiological conditions, sLex can affect the immune process and fertilization process. Lower expression of sLex could cause leukocyte adhesion defects (LAD) II. Overexpression of sLex on the other hand has been linked to several cancers including melanoma, breast, pancreatic, liver, lung, head and neck, ovarian, bladder carcinomas and some blood disease including Hodgkin disease, some B cell chronic lymphocytic leukemias, acute lymphoblastic leukemias, and most acute nonlymphocytic leukemias. This paper mainly reviews the physiological functions and pathological effects of sLex and its applications in disease diagnosis, drug delivery, gene transfer and medical molecular imaging. We aim to help researchers and other readers quickly grasp the physiological and pathological roles and its medical applications of sLex, and give some suggestions for research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Watkins, W.M.: Blood-group substances. Science. 152(3719), 172–181 (1996)

    Google Scholar 

  2. Cazet, A., Julien, S., Bobowski, M., Krzewinski-Recchi, M.A., Harduin-Lepers, A., Groux-Degroote, S., Delannoy, P.: Consequences of the expression of sialylated antigens in breast cancer. Carbohydr Res. 34(5), 1377–1383 (2010)

    Google Scholar 

  3. Scarà, S., Bottoni, P., Scatena, R.: CA 19-9: biochemical and clinical aspects. Adv. Exp. Med. Biol. 867, 247–260 (2015)

    PubMed  Google Scholar 

  4. Ritz, J., Pesando, J.M., Notis-McConarty, J., Lazarus, H., Schlossman, S.F.: A monoclonal antibody to human acute lymphoblastic leukaemia antigen. Nature. 283, 583–585 (1980)

    CAS  PubMed  Google Scholar 

  5. Fukushima, K., Hirota, M., Terasaki, P.I., Wakisaka, A., Togashi, H., Chia, D., Suyama, N., Fukushi, Y., Nudelman, E., Hakomori, S.: Characterization of sialosylated Lewis x as a new tumor-associated antigen. Cancer Res. 44(11), 5279–5285 (1984)

    CAS  PubMed  Google Scholar 

  6. Barclay, A.N., Brown, M.H., Law, S.K.A., Mcknight, A.J., Tomlinson, M.G.: CD15s. Leucocyte Antigen Factsbook. 2(5869), 172 (1997)

    Google Scholar 

  7. Varki, A.: Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropol. (Suppl. 33):54–69 (2001)

    Google Scholar 

  8. Bergfeld, A.K., Pearce, O.M., Diaz, S.L., Lawrence, R., Vocadlo, D.J., Choudhury, B., Esko, J.D., Varki, A.: Metabolism of vertebrate amino sugars with N-glycolyl groups: incorporation of N-glycolylhexosamines into mammalian glycans by feeding N-glycolylgalactosamine. J. Biol. Chem. 287, 28898–28916 (2012)

    CAS  PubMed  Google Scholar 

  9. Yago, T., Fu, J., McDaniel, J.M., Miner, J.J., McEver, R.P., Xia, L.: Core 1-derived O-glycans are essential E-selectin ligands on neutrophils. Proc. Natl. Acad. Sci. U. S. A. 107(20), 9204–9209 (2010)

    CAS  PubMed  Google Scholar 

  10. Mitoma, J., Fukuda, M.: Core O-glycans required for lymphocyte homing gene knockout mice of core 1 beta1,3-N-acetylglucosaminyltransferase and core 2 N-acetylglucosaminyltransferase. Methods Enzymol. 479, 257–270 (2010)

    CAS  PubMed  Google Scholar 

  11. Galustian, C., Lawson, A.M., Komba, S., Ishida, H., Kiso, M., Feizi, T.: Sialyl-Lewis(x) sequence 6-O-sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand for L-selectin and de-N-acetylation of the sialic acid enhances the binding strength. Biochem. Biophys. Res. Commun. 240(3), 748–751 (1997)

    CAS  PubMed  Google Scholar 

  12. Krishnamurthy, V.R., Sardar, M.Y., Ying, Y., Song, X., Haller, C., Dai, E., Wang, X., Hanjaya-Putra, D., Sun, L., Morikis, V., Simon, S.I., Woods, R.J., Cummings, R.D., Chaikof, E.L.: Glycopeptide analogues of PSGL-1 inhibit P-selectin in vitro and in vivo. Nat. Commun. 6, 6387 (2015)

    CAS  PubMed  Google Scholar 

  13. Kawashima, H., Hirose, M., Hirose, J., Nagakubo, D., Plaas, A.H., Miyasaka, M.: Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J. Biol. Chem. 275(45), 35448–35456 (2000)

    CAS  PubMed  Google Scholar 

  14. Barthel, S.R., Gavino, J.D., Descheny, L., Dimitroff, C.J.: Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin. Ther. Targets. 11, 1473–1491 (2007)

    CAS  PubMed  Google Scholar 

  15. Preston, R.C., Jakob, R.P., Binder, F.P., Sager, C.P., Ernst, B., Maier, T.: E-selectin ligand complexes adopt an extended high-affinity conformation. J. Mol. Cell Biol. 8(1), 62–72 (2016)

    CAS  PubMed  Google Scholar 

  16. Norman, K.E., Blanks, J.E.: Mechanisms that regulate the function of the selectins and their ligands. Blood. 79, 181–213 (1999)

    Google Scholar 

  17. Wu, X., Kim, D., Young, A.T., Haynes, C.L.: Exploring inflammatory disease drug effects on neutrophil function. Analyst. 139(16), 4056–4063 (2014)

    CAS  PubMed  Google Scholar 

  18. Zen, K., Cui, L.B., Zhang, C.Y., Liu, Y.: Critical role of mac-1 sialyl Lewis x moieties in regulating neutrophil degranulation and transmigration. J. Mol. Biol. 374(1), 54–63 (2007)

    PubMed  Google Scholar 

  19. Stadtmann, A., Germena, G., Block, H., Boras, M., Rossaint, J., Sundd, P., Lefort, C., Fisher, C.I., Buscher, K., Gelschefarth, B., Urzainqui, A., Gerke, V., Ley, K., Zarbock, A.: The PSGL-1-L-selectin signaling complex regulates neutrophil adhesion under flow. J. Exp. Med. 210(11), 2171–2180 (2013)

    CAS  PubMed  Google Scholar 

  20. Sloboda, D.D., Brooks, S.V.: Treatment with selectin blocking antibodies after lengthening contractions of mouse muscle blunts neutrophil accumulation but does not reduce damage. Physiol Rep. 4(1), (2016). https://doi.org/10.14814/phy2.12667

    PubMed  PubMed Central  Google Scholar 

  21. Moreno, A.A.N., Gout, E., Danella-Polli, C., Tabarin, F., Lesavre, P., Pereira-da-Silva, G., Thielens, N.M., Halbwachs-Mecarelli, L.: M-ficolin and leukosialin (CD43): new partners in neutrophil adhesion. J. Leukoc. Biol. 91(3), 469–474 (2012)

    Google Scholar 

  22. Urzainqui, A., Martínez del Hoyo, G., Lamana, A., de la Fuente, H., Barreiro, O., Olazabal, I.M., Martin, P., Wild, M.K., Vestweber, D., González-Amaro, R., Sánchez-Madrid, F.: Functional role of P-selectin glycoprotein ligand 1/P-selectin interaction in the generation of tolerogenic dendritic cells. J Immunol. 179(11), 7457–7465 (2007)

    CAS  PubMed  Google Scholar 

  23. Velázquez, F., Grodecki-Pena, A., Knapp, A., Salvador, A.M., Nevers, T., Croce, K., Alcaide, P.: CD43 functions as an E-Selectin ligand for Th17 cells in vitro and is required for rolling on the vascular endothelium and Th17 cell recruitment during inflammation in vivo. J. Immunol. 196(3), 1305–1316 (2016)

    PubMed  Google Scholar 

  24. Rotteveel, F.T., van Doornmalen, A.M., van Duin, M.: SLex is not responsible for the interaction of sLex-positive memory T lymphocytes with E-selectin. Immunology. 86(1), 34–40 (1995)

    CAS  PubMed  Google Scholar 

  25. Klonowski, K.D., Marzo, A.L., Williams, K.J., Lee, S.J., Pham, Q.M., Lefrancois, L.: CD8 T cell recall responses are regulated by the tissue tropism of the memory cell and pathogen. J. Immunol. 177(10), 6738–6746 (2006)

    CAS  PubMed  Google Scholar 

  26. Koschella, M., Voehringer, D., Pircher, H.: CD40 ligation in vivo induces bystander proliferation of memory phenotype CD8 T cells. J. Immunol. 172(8), 4804–4811 (2004)

    CAS  PubMed  Google Scholar 

  27. Zhang, Y., Ohkuri, T., Wakita, D., Narita, Y., Chamoto, K., Kitamura, H., Nishimura, T.: Sialyl Lewis x antigen-expressing human CD4+ T and CD8+ T cells as initial immune responders in memory phenotype subsets. J. Leukoc. Biol. 84(3), 730–735 (2008)

    CAS  PubMed  Google Scholar 

  28. Sakaguchi, S., Yamaguchi, T., Nomura, T., Ono, M.: Regulatory T cells and immune tolerance. Cell. 133(5), 775–787 (2008)

    CAS  PubMed  Google Scholar 

  29. Sakaguchi, S., Miyara, M., Costantino, C.M., Hafler, D.A.: FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 10(7), 490–500 (2010)

    CAS  PubMed  Google Scholar 

  30. Ito, T., Hanabuchi, S., Wang, Y.H., Park, W.R., Arima, K., Bover, L., Qin, F.X., Gilliet, M., Liu, Y.J.: Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity. 28(6), 870–888 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Thornton, A.M., Korty, P.E., Tran, D.Q., Wohlfert, E.A., Murray, P.E., Belkaid, Y., Shevach, E.M.: Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184(7), 3433–3441 (2010)

    CAS  PubMed  Google Scholar 

  32. Miyara, M., Chader, D., Sage, E., Sugiyama, D., Nishikawa, H., Bouvry, D., Claër, L., Hingorani, R., Balderas, R., Rohrer, J., Warner, N., Chapelier, A., Valeyre, D., Kannagi, R., Sakaguchi, S., Amoura, Z., Gorochov, G.: Sialyl Lewis x (CD15s) identifies highly differentiated and most suppressive FOXP3high regulatory T cells in humans. Proc. Natl. Acad. Sci. U. S. A. 112(23), 7225–7230 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sugiyama, D., Nishikawa, H., Maeda, Y., Nishioka, M., Tanemura, A., Katayama, I., Ezoe, S., Kanakura, Y., Sato, E., Fukumori, Y., Karbach, J., Jäger, E., Sakaguchi, S.: Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc. Natl. Acad. Sci. U. S. A. 110(44), 17945–17950 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Saldívar-Hernández, A., González-González, M.E., Sánchez-Tusié, A., Maldonado-Rosas, I., López, P., Treviño, C.L., Larrea, F., Chirinos, M.: Human sperm degradation of zona pellucida proteins contributes to fertilization. Reprod. Biol. Endocrinol. 13, 99 (2015)

    PubMed  PubMed Central  Google Scholar 

  35. Clark, G.F., Patankar, M.S., Hinsch, K.D., Oehninger, S.: New concepts in human sperm – zona pellucida interaction. Hum. Reprod. 10, 31–37 (1995)

    CAS  PubMed  Google Scholar 

  36. Lucas, H., Le, P.J., Harb, J., Moreau, A., Bercegeay, S., Barriere, P.: Identification of spermatozoa L-selectin and two potential pellucida ligands. C R Acad Sci. III. 318, 795–801 (1995)

    CAS  PubMed  Google Scholar 

  37. Chiu, P.C., Wong, B.S., Chung, M.K., Lam, K.K., Pang, R.T., Lee, K.F., Sumitro, S.B., Gupta, S.K., Yeung, W.S.: Effects of native human zona pellucida glycoproteins 3 and 4 on acrosome reaction and zona pellucida binding of human spermatozoa. Biol. Reprod. 79, 869–877 (2008)

    CAS  PubMed  Google Scholar 

  38. Pang, P.C., Chiu, P.C., Lee, C.L., Chang, L.Y., Panico, M., Morris, H.R., Haslam, S.M., Khoo, K.H., Clark, G.F., Yeung, W.S., Dell, A.: Human sperm binding is mediated by the sialyl-Lewis(x) oligosaccharide on the zona pellucida. Science. 333(6050), 1761–1764 (2011)

    CAS  PubMed  Google Scholar 

  39. Genbacev, O.D., Prakobphol, A., Foulk, R.A., Krtolica, A.R., Ilic, D., Singer, M.S., Yang, Z.Q., Kiessling, L.L., Rosen, S.D., Fisher, S.J.: Trophoblast L-selectin-mediated adhesion at the maternal–fetal interface. Science. 299, 405–408 (2003)

    CAS  PubMed  Google Scholar 

  40. Prakobphol, A., Genbacev, O., Gormley, M., Kapidzic, M., Fisher, S.J.: A role for the L-selectin adhesion system in mediating cytotrophoblast emigration from the placenta. Dev. Biol. 298, 107–117 (2006)

    CAS  PubMed  Google Scholar 

  41. Lübke, T., Marquardt, T., Etzioni, A., Hartmann, E.: von, Figura, K., Körner, C.: complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat. Genet. 28(1), 73–76 (2001)

    PubMed  Google Scholar 

  42. Lühn, K., Wild, M.K., Eckhardt, M., Gerardy-Schahn, R., Vestweber, D.: The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat. Genet. 28(1), 69–72 (2001)

    PubMed  Google Scholar 

  43. Gazit, Y., Mory, A., Etzioni, A., Frydman, M., Scheuerman, O., Gershoni-Baruch, R., Garty, B.Z.: Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J. Clin. Immunol. 30(2), 308–313 (2010)

    CAS  PubMed  Google Scholar 

  44. Dauber, A., Ercan, A., Lee, J., James, P., Jacobs, P.P., Ashline, D.J., Wang, S.R., Miller, T., Hirschhorn, J.N., Nigrovic, P.A., Sackstein, R.: Congenital disorder of fucosylation type 2c (LADII) presenting with short stature and developmental delay with minimal adhesion defect. Hum. Mol. Genet. 23(11), 2880–2887 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yakubenia, S., Frommhold, D., Schölch, D., Hellbusch, C.C., Körner, C., Petri, B., Jones, C., Ipe, U., Bixel, M.G., Krempien, R., Sperandio, M., Wild, M.K.: Leukocyte trafficking in a mouse model for leukocyte adhesion deficiency II/congenital disorder of glycosylation Iic. Blood. 112(4), 1472–1481 (2008)

    CAS  PubMed  Google Scholar 

  46. Kuijpers, T.W., Etzioni, A., Pollack, S., Pals, S.T.: Antigen-specific immune responsiveness and lymphocyte recruitment in leukocyte adhesion deficiency type II. Int. Immunol. 9(4), 607–613 (1997)

    CAS  PubMed  Google Scholar 

  47. Marquardt, T., Brune, T., Lühn, K., Zimmer, K.P., Korner, C., Fabritz, L., vander Werft, N., Vormoor, J., Freeze, H.H., Louwen, F., Biermann, B., Harms, E., von Figura, K., Vestweber, D., Koch, H.G.: Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J Pediatr. 134(6), 681–688 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Aakhus, A.M., Stavem, P., Hovig, T., Pedersen, T.M., Solum, N.O.: Studies on a patient with thrombocytopenia, giant platelets and a platelet membrane glycoprotein Ib with reduced amount of sialic acid. Br. J. Haematol. 74(3), 320–329 (1990)

    CAS  PubMed  Google Scholar 

  49. Willig, T.B., Breton-Gorius, J., Elbim, C., Mignotte, V., Kaplan, C., Mollicone, R., Pasquier, C., Filipe, A., Mielot, F., Cartron, J.P., Gougerot-Pocidalo, M.A., Debili, N., Guichard, J., Dommergues, J.P., Mohandas, N., Tchernia, G.: Macrothrombocytopenia with abnormal demarcation membranes in megakaryocytes and neutropenia with a complete lack of sialyl-Lewis-X antigen in leukocytes—a new syndrome? Blood. 97(3), 826–828 (2001)

    CAS  PubMed  Google Scholar 

  50. Jones, C., Denecke, J., Strater, R., Stolting, T., Schunicht, Y., Zeuschner, D., Klumperman, J., Lefeber, D.J., Spelten, O., Zarbock, A., Kelm, S., Strenge, K., Haslam, S.M., Lühn, K., Stahl, D., Gentile, L., Schreiter, T., Hilgard, P., Beck-Sickinger, A.G., Marquardt, T., Wild, M.K.: A novel type of macrothrombocytopenia associated with a defect in alpha2,3-sialylation. Am. J. Pathol. 179(4), 1969–1977 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Marquardt, T., Lühn, K., Srikrishna, G., Freeze, H.H., Harms, E., Vestweber, D.: Correction of leukocyte adhesion deficiency type II with oral fucose. Blood. 94(12), 3976–3985 (1999)

    CAS  PubMed  Google Scholar 

  52. Wolach, B., Gavrieli, R., Wolach, O., Stauber, T., Abuzaitoun, O., Kuperman, A., Amir, Y., Stepensky, P., Somech, R., Etzioni, A.: Leucocyte adhesion deficiency-A multicentre national experience. Eur. J. Clin. Investig. 49(2), e13047 (2019)

    Google Scholar 

  53. Mahadevan, D., von Hoff, D.D.: Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 6 (4):1186–1197 (2007)

    CAS  PubMed  Google Scholar 

  54. Higai, K., Miyazaki, N., Azuma, Y., Matsumoto, K.: Interleukin-1beta induces sialyl Lewis X on hepatocellular carcinoma HuH-7 cells via enhanced expression of ST3Gal IV and FUT VI gene. FEBS Lett. 580(26), 6069–6075 (2006)

    CAS  PubMed  Google Scholar 

  55. Radhakrishnan, P., Chachadi, V., Lin, M.F., Singh, R., Kannagi, R., Cheng, P.W.: TNFα enhances the motility and invasiveness of prostatic cancer cells by stimulating the expression of selective glycosyl- and sulfotransferase genes involved in the synthesis of selectin ligands. Biochem. Biophys. Res. Commun. 409(3), 436–441 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Colomb, F., Vidal, O., Bobowski, M., Krzewinski-Recchi, M.A., Harduin-Lepers, A., Mensier, E., Jaillard, S., Lafitte, J.J., Delannoy, P., Groux-Degroote, S.: TNF induces the expression of the sialyltransferase ST3Gal IV in human bronchial mucosa via MSK1/2 protein kinases and increases FliD/ sialyl-Lewis(x) mediated adhesion of Pseudomonas aeruginosa. Biochem. J. 457(1), 79–87 (2014)

    CAS  PubMed  Google Scholar 

  57. Groux-Degroote, S., Krzewinski-Recchi, M.A., Cazet, A., Vincent, A., Lehoux, S., Lafitte, J.J., van Seuningen, I., Delannoy, P.: IL-6 and IL-8 increase the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of sialylated and/or sulfated Lewis x epitopes in the human bronchial mucosa. Biochem J. 410(1), 213–223 (2008)

    CAS  PubMed  Google Scholar 

  58. Higai, K., Ishihara, S., Matsumoto, K.: NFkappaB-p65 dependent transcriptional regulation of glycosyltransferases in human colon adenocarcinoma HT-29 by stimulation with tumor necrosis factor alpha. Biol. Pharm. Bull. 29(12), 2372–2377 (2006)

    CAS  PubMed  Google Scholar 

  59. Bassagañas, S., Allende, H., Cobler, L., Ortiz, M.R., Llop, E., de Bolós, C., Peracaula, R.: Inflammatory cytokines regulate the expression of glycosyltransferases involved in the biosynthesis of tumor-associated sialylated glycans in pancreatic cancer cell lines. Cytokine. 75(1), 197–206 (2015)

    PubMed  Google Scholar 

  60. Sarrats, A., Saldova, R., Pla, E., Fort, E., Harvey, D.J., Struwe, W.B., de Llorens, R., Rudd, P.M., Peracaula, R.: Glycosylation of liver acute-phase proteins in pancreatic cancer and chronic pancreatitis. Proteomics. Clin Appl. 4(4), 432–448 (2010)

    CAS  PubMed  Google Scholar 

  61. Zwenger, A., Rabassa, M., Demichelis, S., Grossman, G., Segal-Eiras, A., Croce, M.V.: High expression of sLex associated with poor survival in Argentinian colorectal cancer patients. Int. J. Biol. Markers. 29(1), e30–e39 (2014)

    PubMed  Google Scholar 

  62. St Hill, C.A., Farooqui, M., Mitcheltree, G., Gulbahce, H.E., Jessurun, J., Cao, Q., Walcheck, B.: The high affinity selectin glycan ligand C2-O-sLex and mRNA transcripts of the core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT1) gene are highly expressed in human colorectal adenocarcinomas. BMC Cancer. 9, 79 (2009)

    PubMed  PubMed Central  Google Scholar 

  63. Li, D., Sun, H., Bai, G., Wang, W., Liu, M., Bao, Z., Li, J., Liu, H.: α-1,3-Fucosyltransferase-VII siRNA inhibits the expression of SLex and hepatocarcinoma cell proliferation. Int J Mol Med. 42(5), 2700–2708 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Danishefsky, S.J., Allen, J.R.: From the laboratory to the clinic: A retrospective on fully synthetic carbohydrate-based anticancer vaccines frequently used abbreviations are listed in the appendix. Angew Chem Int Ed Engl. 39(5), 836–863 (2000)

    CAS  PubMed  Google Scholar 

  65. Seeberger, P.H., Werz, D.B.: Synthesis and medical applications of oligosaccharides. Nature. 446(7139), 1046–1051 (2007)

    CAS  PubMed  Google Scholar 

  66. Ouerfelli, O., Warren, J.D., Wilson, R.M., Danishefsky, S.J.: Synthetic carbohydrate-based antitumor vaccines: challenges and opportunities. Expert Rev Vaccines. 4(5), 677–685 (2005)

    CAS  PubMed  Google Scholar 

  67. Woodman, N., Pinder, S.E., Tajadura, V., Le, B.X., Gillett, C., Delannoy, P., Burchell, J.M., Julien, S.: Two E-selectin ligands, BST-2 and LGALS3BP, predict metastasis and poor survival of ER-negative breast cancer. Int J Oncol. 49(1), 265–275 (2016)

    CAS  PubMed  Google Scholar 

  68. Shinagawa, T., Hoshino, H., Taga, M., Sakai, Y., Imamura, Y., Yokoyama, O., Kobayashi, M.: Clinicopathological implications to micropapillary bladder urothelial carcinoma of the presence of sialyl Lewis X-decorated mucin 1 in stroma-facing membranes. Urol Oncol. 35(10), 606.e17–606.e23 (2017)

    CAS  Google Scholar 

  69. Gornik, O., Royle, L., Harvey, D.J., Radcliffe, C.M., Saldova, R., Dwek, R.A., Rudd, P., Lauc, G.: Changes of serum glycans during sepsis and acute pancreatitis. Glycobiology. 17(12), 1321–1332 (2007)

    CAS  PubMed  Google Scholar 

  70. Pérez-Garay, M., Arteta, B., Pagès, L., de Llorens, R., de Bolòs, C., Vidal-Vanaclocha, F., Peracaula, R.: alpha 2,3-sialyltransferase ST3Gal III modulates pancreatic cancer cell motility and adhesion in vitro and enhances its metastatic potential in vivo. PLoS One. 5(9), (2010). https://doi.org/10.1371/journal.pone.0012524

    PubMed  PubMed Central  Google Scholar 

  71. Cui, H.X., Wang, H., Wang, Y., Song, J., Tian, H., Xia, C., Shen, Y.: ST3Gal III modulates breast cancer cell adhesion and invasion by altering the expression of invasion-related molecules. Oncol. Rep. 36(6), 3317–3324 (2016)

    CAS  PubMed  Google Scholar 

  72. Gomes, C., Osório, H., Pinto, M.T., Campos, D., Oliveira, M.J., Reis, C.A.: Expression of ST3GAL4 leads to sLex expression and induces c-met activation and an invasive phenotype in gastric carcinoma cells. PLoS One. 8(6), e66737 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hiller, K.M., Mayben, J.P., Bendt, K.M., Manousos, G.A., Senger, K., Cameron, H.S., Weston, B.W.: Transfection of α(1,3) fucosyltransferase antisense sequences impairs the proliferative and tumorigenic ability of human colon carcinoma cells. Mol. Carcinog. 27(4), 280–288 (2000)

    CAS  PubMed  Google Scholar 

  74. Trinchera, M., Malagolini, N., Chiricolo, M., Santini, D., Minni, F., Caretti, A., Dall'olio, F.: The biosynthesis of the selectin-ligand sialyl Lewis x in colorectal cancer tissues is regulated by fucosyltransferase VI and can be inhibited by an RNA interference-based approach. Int. J. Biochem. Cell Biol. 43(1), 130–139 (2011)

    CAS  PubMed  Google Scholar 

  75. Lee, J.K., Bistrup, A., van Zante, A., Rosen, S.D.: Activities and expression pattern of the carbohydrate sulfotransferase GlcNAc6ST-3 (I-GlcNAc6ST): functional implications. Glycobiology. 13(4), 245–254 (2003)

    CAS  PubMed  Google Scholar 

  76. Asano, M., Nakae, S., Kotani, N., Shirafuji, N., Nambu, A., Hashimoto, N., Kawashima, H., Hirose, M., Miyasaka, M., Takasaki, S., Iwakura, Y.: Impaired selectin-ligand biosynthesis and reduced inflammatory responses in beta-1,4-galactosyltransferase-I-deficient mice. Blood. 102(5), 1678–1685 (2003)

    CAS  PubMed  Google Scholar 

  77. Tei, K., Kawakami-Kimura, N., Taguchi, O., Kumamoto, K., Higashiyama, S., Taniguchi, N., Toda, K., Kawata, R., Hisa, Y., Kannagi, R.: Roles of cell adhesion molecules in tumor angiogenesis induced by cotransplantation of cancer and endothelial cells to nude rats. Cancer Res. 62(21), 6289–6296 (2002)

    CAS  PubMed  Google Scholar 

  78. Mathieu, S., Gerolami, R., Luis, J., Carmona, S., Kol, O., Crescence, L., Garcia, S., Borentain, P., EI-Battari, A.: Introducing a (1,2)-linked fucose into hepatocarcinoma cells inhibits vasculogenesis and tumor growth. Int. J. Cancer. 121(8), 1680–1689 (2007)

    CAS  PubMed  Google Scholar 

  79. Yoshimoto, K., Tajima, H., Ohta, T., Okamoto, K., Sakai, S., Kinoshita, J., Furukawa, H., Makino, I., Hayashi, H., Nakamura, K., Oyama, K., Inokuchi, M., Nakagawara, H., Itoh, H., Fujita, H., Takamura, H., Ninomiya, I., Kitagawa, H., Fushida, S., Fujimura, T., Wakayama, T., Iseki, S., Shimizu, K.: Increased E-selectin in hepatic ischemia-reperfusion injury mediates liver metastasis of pancreatic cancer. Oncol. Rep. 28(3), 791–796 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Van, G.T.M., van den Berg, J.W., Dik, W.A., Ijzermans, J.N., de Bruin, R.W.: Preoperative dietary restriction reduces hepatic tumor load by reduced E-selectin-mediated adhesion in mice. J Surg Oncol. 102(4), 348–353 (2010)

    Google Scholar 

  81. Uotani, H., Yamashita, I., Nagata, T., Kishimoto, H., Kashii, Y., Tsukada, K.: Induction of E-selectin after partial hepatectomy promotes metastases to liver in mice. J. Surg. Res. 96(2), 197–203 (2001)

    CAS  PubMed  Google Scholar 

  82. Kang, S.A., Blache, C.A., Bajana, S., Hasan, N., Kamal, M., Morita, Y., Gupta, V., Tsolmon, B., Suh, K.S., Gorenstein, D.G., Razaq, W., Rui, H., Tanaka, T.: The effect of soluble E-selectin on tumor progression and metastasis. BMC Cancer. 16(1), 370 (2016)

    PubMed  Google Scholar 

  83. Jassam, S.A., Maherally, Z., Smith, J.R., Ashkan, K., Roncaroli, F., Fillmore, H.L., Pilkington, G.J.: CD15s/CD62E Interaction Mediates the Adhesion of Non-Small Cell Lung Cancer Cells on Brain Endothelial Cells: Implications for Cerebral Metastasis. Int J Mol Sci. 18(7). (2017). https://doi.org/10.3390/ijms18071474

    Google Scholar 

  84. Taga, M., Hoshino, H., Low, S., Imamura, Y., Ito, H., Yokoyama, O., Kobayashi, M.: A potential role for 6-sulfo sialyl Lewis X in metastasis of bladder urothelial carcinoma. Urol Oncol. 33(11), 496.e1–496.e9 (2015)

    CAS  Google Scholar 

  85. Okuno, K., Kawai, I., Hirai, N., Narimatsu, H., Yasutomi, M.: Role of sialyl Lewis X in liver metastasis in view of liver-associated immunity. Hepatogastroenterology. 50(51), 756–760 (2003)

    CAS  PubMed  Google Scholar 

  86. Ohyama, C., Kanto, S., Kato, K., Nakano, O., Arai, Y., Kato, T., Chen, S., Fukuda, M.N., Fukuda, M.: Natural killer cells attack tumor cells expressing high levels of sialyl Lewis x oligosaccharides. Proc. Natl. Acad. Sci. U. S. A. 99(21), 13789–13794 (2002)

    CAS  PubMed  Google Scholar 

  87. Ueoka, H., Ohnoshi, T., Moritaka, T., Kiura, K., Mima, Y., Horiguchi, T., Segawa, Y., Tabata, M., Shibayama, T., Maeda, T.: A statistical analysis of serum sialyl Lewis X-1 (SLX), CEA, SCC and NSE levels in patients with lung cancer. Nihon Kyobu. Shikkan Gakkai Zasshi. 29(8), 1022–1028 (1991)

    CAS  PubMed  Google Scholar 

  88. Tang, H., Singh, S., Partyka, K., Kletter, D., Hsueh, P., Yadav, J., Ensink, E., Bern, M., Hostetter, G., Hartman, D., Huang, Y., Brand, R.E., Haab, B.B.: Glycan motif profiling reveals plasma sialyl-Lewis x elevations in pancreatic cancers that are negative for sialyl-Lewis A. Mol. Cell. Proteomics. 14(5), 1323–1333 (2015)

    CAS  PubMed  Google Scholar 

  89. Komatsu, H., Mizuguchi, S., Izumi, N., Chung, K., Hanada, S., Inoue, H., Suehiro, S., Nishiyama, N.: Sialyl Lewis X as a predictor of skip N2 metastasis in clinical stage IA non-small cell lung cancer. World J Surg Oncol. 11, 309 (2013)

    PubMed  Google Scholar 

  90. Fujita, T., Murayama, K., Hanamura, T., Okada, T., Ito, T., Harada, M., Komatsu, A., Koyama, H., Kanai, T., Maeno, K., Mochizuki, Y., Hama, Y., Ito, K., Amano, J., Fujimori, M.: CSLEX (Sialyl Lewis X) is a useful tumor marker for monitoring of breast cancer patients. Jpn. J. Clin. Oncol. 41(3), 394–399 (2011)

    PubMed  Google Scholar 

  91. Yamashita, J., Kobayashi, I., Tatematsu, K., Sezutsu, H., Noda, K., Ishihara, H.: Sandwich ELISA using a mouse/human chimeric CSLEX-1 antibody. Clin. Chem. 62(11), 1516–1523 (2016)

    CAS  PubMed  Google Scholar 

  92. Sozzani, P., Arisio, R., Porpiglia, M., Benedetto, C.: Is Sialyl Lewis x antigen expression a prognostic factor in patients with breast cancer? Int. J. Surg. Pathol. 16(4), 365–374 (2008)

    PubMed  Google Scholar 

  93. Markic, J., Jeroncic, A., Polancec, D., Bosnjak, N., Markotic, A., Mestrovic, J., Culic, V.C.: CD15s is a potential biomarker of serious bacterial infection in infants admitted to hospital. Eur. J. Pediatr. 172(10), 1363–1369 (2013)

    CAS  PubMed  Google Scholar 

  94. Welply, J.K., Abbas, S.Z., Scudder, P., Keene, J.L., Broschat, K., Casnocha, S., Gorka, C., Steininger, C., Howard, S.C., Schmuke, J.J.: Multivalent sialyl-LeX: potent inhibitors of E-selectin-mediated cell adhesion; reagent for staining activated endothelial cells. Glycobiology. 4(3), 259–265 (1994)

    CAS  PubMed  Google Scholar 

  95. Minaguchi, J., Oohashi, T., Inagawa, K., Ohtsuka, A., Ninomiya, Y.: Transvascular accumulation of Sialyl Lewis X conjugated liposome in inflamed joints of collagen antibody-induced arthritic (CAIA) mice. Arch. Histol. Cytol. 71(3), 195–203 (2008)

    PubMed  Google Scholar 

  96. Hashida, N., Ohguro, N., Yamazaki, N., Arakawa, Y., Oiki, E., Mashimo, H., Kurokawa, N., Tano, Y.: High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome. Exp. Eye Res. 86(1), 138–149 (2008)

    CAS  PubMed  Google Scholar 

  97. Maehara, A., Nishida, K., Furutani, M., Matsumoto, E., Ohtsuka, A., Ninomiya, Y., Oohashi, T.: Light and electron microscopic detection of inflammation-targeting liposomes encapsulating high-density colloidal gold in arthritic mice. Inflamm. Res. 63(2), 139–147 (2014)

    CAS  PubMed  Google Scholar 

  98. Chantarasrivong, C., Ueki, A., Ohyama, R., Unga, J., Nakamura, S., Nakanishi, I., Higuchi, Y., Kawakami, S., Ando, H., Imamura, A., Ishida, H., Yamashita, F., Kiso, M., Hashida, M.: Synthesis and functional characterization of novel Sialyl LewisX mimic-decorated liposomes for E-selectin-mediated targeting to inflamed endothelial cells. Mol. Pharm. 14(5), 1528–1537 (2017)

    CAS  PubMed  Google Scholar 

  99. Banerjee, R., Tyagi, P., Li, S., Huang, L.: Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int. J. Cancer. 112(4), 693–700 (2004)

    CAS  PubMed  Google Scholar 

  100. Surace, C., Arpicco, S., Dufaÿ-Wojcicki, A., Marsaud, V., Bouclier, C., Clay, D., Cattel, L., Renoir, J.M., Fattal, E.: Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. Mol. Pharm. 6(4), 1062–1073 (2009)

    CAS  PubMed  Google Scholar 

  101. Nallamothu, R., Wood, G.C., Pattillo, C.B., Scott, R.C., Kiani, M.F., Moore, B.M., Thoma, L.A.: A tumor vasculature targeted liposome delivery system for combretastatin A4: design, characterization, and in vitro evaluation. AAPS PharmSciTech. 7(2), E32 (2006)

    PubMed  Google Scholar 

  102. Palekar, R.U., Myerson, J.W., Schlesinger, P.H., Sadler, J.E., Pan, H., Wickline, S.A.: Thrombin-targeted liposomes establish a sustained localized anticlotting barrier against acute thrombosis. Mol. Pharm. 10(11), 4168–4175 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Murohara, T., Margiotta, J., Phillips, L.M., Paulson, J.C., DeFrees, S., Zalipsky, S., Gucl, L.S., Lefer, A.M.: Cardioprotection by liposome-conjugated sialyl Lewis x-oligosaccharide in myocardial ischaemia and reperfusion injury. Cardiovasc. Res. 30(6), 965–974 (1995)

    CAS  PubMed  Google Scholar 

  104. Alekseeva, A., Kapkaeva, M., Shcheglovitova, O., Boldyrev, I., Pazynina, G., Bovin, N., Vodovozova, E.: Interactions of antitumour Sialyl Lewis X liposomes with vascular endothelial cells. Biochim. Biophys. Acta. 1848(5), 1099–1110 (2015)

    CAS  PubMed  Google Scholar 

  105. Tsuruta, W., Tsurushima, H., Yamamoto, T., Suzuki, K., Yamazaki, N., Matsumura, A.: Application of liposomes incorporating doxorubicin with sialyl Lewis X to prevent stenosis after rat carotid artery injury. Biomaterials. 30(1), 118–125 (2009)

    CAS  PubMed  Google Scholar 

  106. Yamada, Y., Kobayashi, H., Iwasa, M., Sumi, S., Ushikoshi, H., Aoyama, T., Nishigaki, K., Takemura, G., Fujiwara, T., Fujiwara, H., Kiso, M., Minatoguchi, S.: Postinfarct active cardiac-targeted delivery of erythropoietin by liposomes with sialyl Lewis X repairs infarcted myocardium in rabbits. Am. J. Physiol. Heart Circ. Physiol. 304(8), H1124–H1133 (2013)

    CAS  PubMed  Google Scholar 

  107. Stahn, R., Schäfer, H., Kernchen, F., Schreiber, J.: Multivalent sialyl Lewis x ligands of definite structures as inhibitors of E-selectin mediated cell adhesion. Glycobiology. 8(4), 311–319 (1998)

    CAS  PubMed  Google Scholar 

  108. Vodovozova, E.L., Moiseeva, E.V., Grechko, G.K., Gayenko, G.P., Nifant’ev, N.E., Bovin, N.V., Molotkovsky, J.G.: Antitumour activity of cytotoxic liposomes equipped with selectin ligand SiaLe(X), in a mouse mammary adenocarcinoma model. Eur. J. Cancer. 36(7), 942–949 (2000)

    CAS  PubMed  Google Scholar 

  109. Hirai, M., Minematsu, H., Hiramatsu, Y., Kitagaw, H., Otani, T., Iwashita, S., Kudoh, T., Chen, L., Li, Y., Okada, M., Salomon, D.S., Igarashi, K., Chikuma, M., Seno, M.: Novel and simple loading procedure of cisplatin into liposomes and targeting tumor endothelial cells. Int. J. Pharm. 391(1–2), 274–283 (2010)

    CAS  PubMed  Google Scholar 

  110. Kuznetsova, N.R., Stepanova, E.V., Peretolchina, N.M., Khochenkov, D.A., Boldyrev, I.A., Bovin, N.V., Vodovozova, E.L.: Targeting liposomes loaded with melphalan prodrug to tumour vasculature via the Sialyl Lewis X selectin ligand. J. Drug Target. 22(3), 242–250 (2013)

    PubMed  Google Scholar 

  111. Kishimoto, S., Fujitani, N., Ohnishi, T., Aoki, H., Suzuki, R., Fukushima, S.: Cisplatin-loaded, Sialyl Lewis X-modified liposomes: drug release, Biodistribution and Antitumor Efficacy. Anticancer Res. 37(11), 6055–6061 (2017)

    CAS  PubMed  Google Scholar 

  112. Stahn, R., Grittner, C., Zeisig, R., Karsten, U., Felix, S.B., Wenzel, K.: Sialyl Lewis(x)-liposomes as vehicles for site-directed, E-selectin-mediated drug transfer into activated endothelial cells. Cell Mol Life Sci. 58(1), 141–147 (2001)

    CAS  PubMed  Google Scholar 

  113. Banquy, X., Leclair, G., Rabanel, J.M., Argaw, A., Bouchard, J.F., Hildgen, P., Giasson, S.: Selectins ligand decorated drug carriers for activated endothelial cell targeting. Bioconjug. Chem. 19(10), 2030–20399 (2008)

    CAS  PubMed  Google Scholar 

  114. Jubeli, E., Moine, L., Nicolas, V., Barratt, G.: Preparation of E-selectin-targeting nanoparticles and preliminary in vitro evaluation. Int. J. Pharm. 426(1–2), 291–301 (2012)

    CAS  PubMed  Google Scholar 

  115. Shamay, Y., Paulin, D., Ashkenasy, G., David, A.: Multivalent display of quinic acid based ligands for targeting E-selectin expressing cells. J. Med. Chem. 52(19), 5906–5915 (2009)

    CAS  PubMed  Google Scholar 

  116. Amoozgar, Z., Park, J., Lin, Q., Weidle, J.H., Yeo, Y.: Development of quinic acid-conjugated nanoparticles as a drug carrier to solid tumors. Biomacromolecules. 14(7), 2389–2395 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schermerhorn, M.L., Nelson, D.P., Blume, E.D., Phillips, L., Mayer, J.E.: Sialyl LewisX oligosaccharide preserves myocardial and endothelial function during cardioplegic ischemia. Ann. Thorac. Surg. 70(3), 890–894 (2000)

    CAS  PubMed  Google Scholar 

  118. Fu, Y., Laurent, S., Muller, R.N.: Synthesis of a Sialyl LewisX mimetic conjugated with DTPA, potential ligand of new contrast agents for medical imaging. Eur. J. Org. Chem. 23, 3966–3973 (2002)

    Google Scholar 

  119. Boutry, S., Burtea, C., Laurent, S., Toubeau, G., Vander Elst, L., Muller, R.N.: Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn Reson Med. 53(4), 800–807 (2005)

    CAS  PubMed  Google Scholar 

  120. Sibson, N.R., Blamire, A.M., Bernades-Silva, M., Laurent, S., Boutry, S., Muller, R.N., Styles, P., Anthony, D.C.: MRI detection of early endothelial activation in brain inflammation. Magn. Reson. Med. 51(2), 248–252 (2004)

    CAS  PubMed  Google Scholar 

  121. Boutry, S., Laurent, S., Elst, L.V., Muller, R.N.: Specific E-selectin targeting with a superparamagnetic MRI contrast agent. Contrast Media Mol Imaging. 1(1), 15–22 (2006)

    CAS  PubMed  Google Scholar 

  122. Barber, P.A., Foniok, T., Kirk, D., Buchan, A.M., Laurent, S., Boutry, S., Muller, R.N., Hoyte, L., Tomanek, B., Tuor, U.I.: MR molecular imaging of early endothelial activation in focal ischemia. Ann. Neurol. 56(1), 116–120 (2004)

    CAS  PubMed  Google Scholar 

  123. Jin, A.Y., Tuor, U.I., Rushforth, D., Kaur, J., Muller, R.N., Petterson, J.L., Boutry, S., Barber, P.A.: Reduced blood brain barrier breakdown in P-selectin deficient mice following transient ischemic stroke: a future therapeutic target for treatment of stroke. BMC Neurosci. 11, 12 (2010)

    PubMed  PubMed Central  Google Scholar 

  124. van Kasteren, S.I., Campbell, S.J., Serres, S., Anthony, D.C., Sibson, N.R., Davis, B.G.: Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci USA. 106(1), 18–123 (2009)

    PubMed  Google Scholar 

  125. Chu, Y., Wang, D., Wang, K., Liu, Z.L., Weston, B., Wang, B.: Fluorescent conjugate of sLe(x)-selective bisboronic acid for imaging application. Bioorg. Med. Chem. Lett. 23(23), 6307–6309 (2013)

    CAS  PubMed  Google Scholar 

  126. Yu, H., Lau, K., Li, Y., Sugiarto, G., Chen, X.: One-pot multienzyme synthesis of Lewis x and sialyl Lewis x antigens. Curr Protoc Chem Biol. 4, 233–247 (2012)

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Major Projects of Science and Technology of Shandong Province (No 2015ZDJS04001) and the Taishan Scholar Scheme of Shandong Province of China (Special Term Expert for Pharmacy, 2012GSF30022).

Author information

Authors and Affiliations

Authors

Contributions

Fanqi Jin; writing—original draft preparation, Fengshan Wang; writing—review and editing.

Corresponding author

Correspondence to Fengshan Wang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F., Wang, F. The physiological and pathological roles and applications of sialyl Lewis x, a common carbohydrate ligand of the three selectins. Glycoconj J 37, 277–291 (2020). https://doi.org/10.1007/s10719-020-09912-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09912-4

Keywords

Navigation