Skip to main content
Log in

Bradyrhizobium uaiense sp. nov., a new highly efficient cowpea symbiont

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

This study describes two Bradyrhizobium strains, UFLA03-164T and UFLA03-153, which share more than 99% sequence similarity of the 16S rRNA with the type strains of 15 species in this genus. The concatenation of three housekeeping genes (recA, gyrB, and dnaK) indicated that both strains formed a single clade separate from known Bradyrhizobium species. B. viridifuturi, represented by SEMIA 690T, is the closest neighboring species (96.2%). Low (< 92%) average nucleotide identity (ANI) was observed between strain UFLA03-164T and any of the closest species on the phylogenetic trees based on concatenated housekeeping genes. The DNA G+C content of UFLA03-164T is 63.25%. Phenotypic characteristics were determined for both UFLA strains. Based on the data, the two strains represent a new species for which the name Bradyrhizobium uaiense is proposed, with UFLA03-164T (= LMG 31509T) as type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avontuur JR, Palmer M, Beukes CW, Chan WY, Coetzee MPA, Blom J, Stepkowski T, Kyrpides NC, Woyke T, Shapiro N, Whitman WB, Venter SN, Steenkamp ET (2019) Genome-informed Bradyrhizobium taxonomy: where to from here? Syst Appl Microbiol 42:427–439

    PubMed  Google Scholar 

  • Azevedo H, Lopes FM, Silla PR, Hungria M (2015) A database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using Multilocus sequence analysis. BMC Genom 16(Suppl. 5):S10

    Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its application to single-cell sequencing. J Comput Biol 19:455–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berrada H, Fikri-Benbrahim K (2014) Taxonomy of the rhizobia: current perspectives. Br Microbiol Res J 4(6):616–639

    Google Scholar 

  • Chahboune R, Carro L, Peix A, Barrijal S, Velázquez E, Bedmar EJ (2011) Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus. Int Int J Syst Evol Microbiol 61:2922–2927

    PubMed  Google Scholar 

  • Costa EM, Guimarães AA, Vicentin RP, Ribeiro PRA, Leão ACR, Balsanelli E, Lebbe L, Aerts M, Willems A, Moreira FMS (2017) Bradyrhizobium brasilense sp. nov., a symbiotic nitrogen-fixing bacterium isolated from Brazilian tropical soils. Arch Microbiol 199:1211–1221

    Google Scholar 

  • de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanovic N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L, Mousavi SA, Nesme X, Peix A, Putawska J, Steenkamp E, Stepkowski T, Tian CF, Vinuesa P, Wei G, Willems A, Zilli J, Young P (2019) Minimal standards for the description of new gene and species of rhizobia and agrobacteria. Int J Syst Evol Microbil. 69:1852–1863

    Google Scholar 

  • Delamuta JR, Ribeiro RA, Araújo JL, Rouws LF, Zilli JÉ, Parma MM, Melo IS, Hungria M (2016) Bradyrhizobium stylosanthis sp. Nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp. Int J Syst Evol Microbiol 66:3078–3087

    CAS  PubMed  Google Scholar 

  • De Ley J (1968) DNA base composition and hybridization in the taxonomy of phytopathogenic bacteria. Annu Rev Phytopathol 6:63–90

    Google Scholar 

  • De Meyer SE, Van Hoorde K, Vekeman B, Braeckman T, Willems A (2011) Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol Biochem 43:2384–2396

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farias TP, Trochmann A, Soares BL, Moreira FMS (2016a) Rhizobia inoculation and liming increase cowpea productivity in Maranhão state. Acta Sci Agron 38:387–395

    Google Scholar 

  • Farias TP, Soares BL, De Araújo ARA, Moreira FMS (2016b) Symbiotic efficiency of rhizobia strains with cowpea in southern Maranhão. Rev Caatinga 29:611–618

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Florentino LA, Sousa PM, Silva JS, Silva KB, Moreira FMS (2010) Diversity and efficiency of Bradyrhizobium strains isolated from soil samples collected from around Sesbania virgata roots using cowpea as trap species. Rev Bras Cien Solo 34:1113–1123

    CAS  Google Scholar 

  • Fred EB, Waksman SA (1928) Laboratory manual of general microbiology with special reference to the microorganisms of the soil. McGraw-Hill Book, New York

    Google Scholar 

  • Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7:e42149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glaeser SP, Kämpfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38:237–245

    CAS  PubMed  Google Scholar 

  • Gouy M, Guindom S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    CAS  PubMed  Google Scholar 

  • Guimarães AA, Florentino LA, Almeida KA, Lebbe L, Silva KB, Willems A, Moreira FMS (2015) High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Syst Appl Microbiol 38:433–441

    Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. PNAS 7:2567–2572

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) Mega 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505

    CAS  Google Scholar 

  • Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A (2018) MUMmer 4: a fast versatile genome alignment system. PLoS Comput Biol 14:e1005944

    PubMed  PubMed Central  Google Scholar 

  • Marra LM, de Oliveira SM, Soares CRFS, Moreira FMS (2011) Solubilisation of inorganic phosphates by inoculant strains from tropical legumes. Sci Agric (Piracicaba, Braz.) 68:603–609

    CAS  Google Scholar 

  • Melloni R, Moreira FMS, Nóbrega RSA, Siqueira JO (2006) Eficiência e diversidade fenotípica de bactérias diazotróficas que nodulam caupi [Vigna unguiculata] e Feijoeiro (Phaseolus vulgaris L.) em solos de mineração de bauxita em reabilitação. Rev Bras Cien Solo 30:235–246

    CAS  Google Scholar 

  • Niemann S, Puehler A, Tichy HV, Simon R, Selbitshka W (1997) Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 82:477–484

    CAS  PubMed  Google Scholar 

  • Oliveira-Longatti SM, Marra LM, Soares BL, Bomfeti CA, da Silva K, Ferreira PAA, Moreira FMS (2014) Bacteria isolated from soil of the western Amazon and from rehabilitated bauxite-mining areas have potential as plant growth promoters. World J Microbiol Biotechnol 30:1239–1250

    PubMed  Google Scholar 

  • Oren A, Garrity GM (2014) Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie Van Leeuwenhoek 106:43–56

    PubMed  Google Scholar 

  • Ormeño-Orrillo E, Martínez-Romero E (2019) A genomotaxonomy view of the Bradyrhizobium. Genus Front Microbiol 10:1334

    PubMed  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells and metagenomes. Genomes Res 25:1043–1055

    CAS  Google Scholar 

  • Ramírez-Bahena MH, Peix A, Rivas R, Camacho M, Rodrígues-Navarro DN, Mateos PF, Martínez-Molina E, Willems A, Velázques E (2009) Bradyrhizobium pachyrhizi sp. nov., and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59:1929–1934

    PubMed  Google Scholar 

  • Ramírez-Bahena MH, Flores-Félix JD, Chahboune R, Toro M, Velázquez E, Peix A (2016) Bradyrhizobium centrosemae (symbiovar centrosemae) sp. nov., Bradyrhizobium americanum (symbiovar phaseolarum) sp. nov., and a new symbiovar with Centrosema species native to America. Syst Appl Microbiol 39:378–383

    PubMed  Google Scholar 

  • Ribeiro PRA, Santos JV, Costa EM, Lebbe L, Louzada MO, Guimarães AA, Assis ES, Willems A, Moreira FMS (2015) Symbiotic efficiency and genetic diversity of soybean bradyrhizobia in Brazilian soils. Agr Ecosyst Environ 212:85–93

    Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas R, Martens M, Lajudie P, Willems A (2009) Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32:101–110

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11

    CAS  PubMed  Google Scholar 

  • Soares BL, Ferreira PAA, Oliveira-Longatti SM, Marra LM, Rufini M, Andrade MJB, Moreira FMS (2014) Cowpea symbiotic efficiency, pH and aluminum tolerance in nitrogen-fixing bacteria. Sci Agric 71:171–180

    CAS  Google Scholar 

  • Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 9:678–687

    CAS  PubMed  Google Scholar 

  • Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54

    CAS  PubMed  Google Scholar 

  • Willems A, Coopman R, Gillis M (2001) Phylogenetic and DNA–DNA hybridization analyses of Bradyrhizobium species. Int J Syst Evol Microbiol 51:111–117

    CAS  PubMed  Google Scholar 

  • Xu LM, Ge C, Cui Z, Li J, Fan H (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711

    CAS  PubMed  Google Scholar 

  • Yao Y, Sui XH, Zhang XX, Wang ET, Chen WX (2015) Bradyrhizobium erythrophlei sp. nov., and Bradyrhizobium ferriligni sp. nov., isolated from effective nodules of Erythrophleum fordii. Int J Syst Evol Microbiol 65:1831–1837

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (CAPES/PROEX AUXPE 593/2018), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Process: 304527/2016-5; Process: 431504/2016-4), and the Fundação de Amparo e Pesquisa de Minas Gerais (Fapemig) (PACCSS/PPGCS-2009-2012) for financial support and for granting scholarships. This research is associated with the Brazilian National Institute of Science and Technology (Soil Biodiversity/INCT-CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Maria de Souza Moreira.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral Michel, D., Azarias Guimarães, A., Martins da Costa, E. et al. Bradyrhizobium uaiense sp. nov., a new highly efficient cowpea symbiont. Arch Microbiol 202, 1135–1141 (2020). https://doi.org/10.1007/s00203-020-01827-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01827-w

Keywords

Navigation