Skip to main content
Log in

Molecular profile of non-aflatoxigenic phenotype in native strains of Aspergillus flavus

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Aflatoxins are the most common mycotoxin contaminant reported in food and feed. Aflatoxin B1, the most toxic among different aflatoxins, is known to cause hepatocellular carcinoma in animals. Aspergillus flavus and A. parasiticus are the main producers of aflatoxins and are widely distributed in tropical countries. Even though several robust strategies have been in use to control aflatoxin contamination, the control at the pre-harvest level is primitive and incompetent. Therefore, the aim of the study was to isolate and identify the non-aflatoxigenic A. flavus and to delineate the molecular mechanism for the loss of aflatoxin production by the non-aflatoxigenic isolates. Eighteen non-aflatoxigenic strains were isolated from various biological sources using cultural and analytical methods. Among the 18 isolates, 8 isolates produced sclerotia and 17 isolates had type I deletion in norB-cypA region. The isolates were confirmed as A. flavus using gene-specific PCR and sequencing of the ITS region. Later, aflatoxin gene-specific PCR revealed that the defect in one or more genes has led to non-aflatoxigenic phenotype. The strain R9 had maximum defect, and genes avnA and verB had the highest frequency of defect among the non-aflatoxigenic strains. Further, qRT-PCR confirmed that the non-aflatoxigenic strains had high frequency of defect or downregulation in the late pathway genes compared to early pathway genes. Thus, these non-aflatoxigenic strains can be the potential candidates for an effective and proficient strategy for the control of pre-harvest aflatoxin contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas HK, Shier WT, Horn BW, Weaver MA (2004a) Cultural methods for aflatoxin detection. J Toxicol Toxin Rev 23:295–315

    Article  CAS  Google Scholar 

  • Abbas HK, Zablotowicz RM, Weaver MA, Horn BW, Xie W, Shier WT (2004b) Comparison of cultural and analytical methods for determination of aflatoxin production by Mississippi Delta Aspergillus isolates. Can J Microbiol 50:193–199

    Article  CAS  PubMed  Google Scholar 

  • Abbas HK, Weaver MA, Zablotowicz RM, Horn BW, Shier WT (2005) Relationships between aflatoxin production and sclerotia formation among isolates of Aspergillus section Flavi from the Mississippi Delta. Eur J Plant Pathol 112:283–287

    Article  Google Scholar 

  • Amaike S, Keller NP (2011) Aspergillus flavus. Annu Rev Phytopathol 49:107–133

    Article  CAS  PubMed  Google Scholar 

  • Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44:W147–W153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayman P, Cotty PJ (1993) Genetic diversity in Aspergillus flavus: association with aflatoxin production and morphology. Can J Bot 71:23–31

    Article  CAS  Google Scholar 

  • Chang P-K, Horn BW, Dorner JW (2005) Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet Biol 42:914–923

    Article  CAS  PubMed  Google Scholar 

  • Chang P-K, Ehrlich KC, Hua S-ST (2006) Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int J Food Microbiol 108:172–177

    Article  CAS  PubMed  Google Scholar 

  • Chang P-K, Wilkinson JR, Horn BW, Yu J, Bhatnagar D, Cleveland TE (2007) Genes differentially expressed by Aspergillus flavus strains after loss of aflatoxin production by serial transfers. Appl Microbiol Biotechnol 77:917–925

    Article  CAS  PubMed  Google Scholar 

  • Cotty PJ (1988) Aflatoxin and sclerotial production by Aspergillus flavus: influence of pH. Phytopathology 78:1250–1253

    Article  CAS  Google Scholar 

  • Cotty PJ (1989) Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton. Phytopathology 79:808–814

    Article  Google Scholar 

  • Cotty PJ, Bayman P (1993) Competitive exclusion of a toxigenic strain of Aspergillus flavus by an atoxigenic strain. Phytopathology 83:1283–1287

    Article  Google Scholar 

  • Criseo G, Bagnara A, Bisignano G (2001) Differentiation of aflatoxin-producing and non-producing strains of Aspergillus flavus group. Lett Appl Microbiol 33:291–295

    Article  CAS  PubMed  Google Scholar 

  • Criseo G, Racco C, Romeo O (2008) High genetic variability in non-aflatoxigenic A. flavus strains by using quadruplex PCR-based assay. Int J Food Microbiol 125:341–343

    Article  CAS  PubMed  Google Scholar 

  • Davis ND, Iyer SK, Diener UL (1987) Improved method of screening for aflatoxin with a coconut agar medium. Appl Environ Microbiol 53:1593–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Beeck MO, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV (2014) Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE 9:e97629

    Article  Google Scholar 

  • Degola F, Berni E, Dall’Asta C, Spotti E, Marchelli R, Ferrero I, Restivo FM (2007) A multiplex RT-PCR approach to detect aflatoxigenic strains of Aspergillus flavus. J Appl Microbiol 103:409–417

    Article  CAS  PubMed  Google Scholar 

  • Donner M, Atehnkeng J, Sikora RA, Bandyopadhyay R, Cotty PJ (2010) Molecular characterization of atoxigenic strains for biological control of aflatoxins in Nigeria. Food Addit Contam 27:576–590

    Article  CAS  Google Scholar 

  • Dorner JW (2004) Biological control of aflatoxin contamination of crops. J Toxicol Toxin Rev 23:425–450

    Article  CAS  Google Scholar 

  • Ehrlich KC, Yu J, Cotty PJ (2005) Aflatoxin biosynthesis gene clusters and flanking regions. J Appl Microbiol 99:518–527

    Article  CAS  PubMed  Google Scholar 

  • Färber P, Geisen R, Holzapfel WH (1997) Detection of aflatoxinogenic fungi in figs by a PCR reaction. Int J Food Microbiol 36:215–220

    Article  PubMed  Google Scholar 

  • Hariprasad P, Vipin AV, Karuna S, Raksha RK, Venkateswaran G (2015) Natural aflatoxin uptake by sugarcane (Saccharum officinaurum L.) and its persistence in jaggery. Environ Sci Pollut Res 22:6246–6253

    Article  CAS  Google Scholar 

  • Henry T, Iwen PC, Hinrichs SH (2000) Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J Clin Microbiol 38:1510–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IARC (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr Eval Carcinog Risks Hum 82:1–556

    Google Scholar 

  • Inan F, Pala M, Doymaz I (2007) Use of ozone in detoxification of aflatoxin B1 in red pepper. J Stored Prod Res 43:425–429

    Article  CAS  Google Scholar 

  • Jiang J, Yan L, Ma Z (2009) Molecular characterization of an atoxigenic Aspergillus flavus strain AF051. Appl Microbiol Biotechnol 83(3):501–505

    Article  CAS  PubMed  Google Scholar 

  • ISTA (2005) International rules for seed testing edition Bassersdorf CH–Switzerland. International Seed Testing Association

  • Kabak B (2009) The fate of mycotoxins during thermal food processing. J Sci Food Agric 89:549–554

    Article  CAS  Google Scholar 

  • Kensler TW, Roebuck BD, Wogan GN, Groopman JD (2010) Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Toxicol Sci 120:S28–S48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim DM, Chung SH, Chun HS (2011) Multiplex PCR assay for the detection of aflatoxigenic and non-aflatoxigenic fungi in meju, a Korean fermented soybean food starter. Food Microbiol 28:1402–1408

    Article  CAS  PubMed  Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  • Klich MA (2007) Aspergillus flavus: the major producer of aflatoxin. Mol Plant Pathol 8:713–722

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (1994) MEGA: Molecular evolutionary genetics analysis software for microcomputers. Comput Appl Biosci CABIOS 10(2):189–191

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Horn BW, Hesseltine CW (1987) Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie Van Leeuwenhoek 53:147–158

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Dianese JC (1976) A coconut-agar medium for rapid detection of aflatoxin production by Aspergillus spp. Phytopathology 66:1466–1469

    Article  CAS  Google Scholar 

  • Logotheti M, Kotsovili-Tseleni A, Arsenis G, Legakis NI (2009) Multiplex PCR for the discrimination of A. fumigatus, A. flavus, A. niger and A. terreus. J Microbiol Methods 76:209–211

    Article  CAS  PubMed  Google Scholar 

  • Mayer Z, Bagnara A, Färber P, Geisen R (2003) Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu of Aspergillus flavus in foods. Int J Food Microbiol 82:143–151

    Article  CAS  PubMed  Google Scholar 

  • Mishra HN, Das C (2003) A review on biological control and metabolism of aflatoxin. Crit Rev Food Sci Nutr 43(3):245–264

    Article  CAS  PubMed  Google Scholar 

  • Muscarella M, Iammarino M, Nardiello D, Lo Magro S, Palermo C, Centonze D, Palermo D (2009) Validation of a confirmatory analytical method for the determination of aflatoxins B1, B2, G1 and G2 in foods and feed materials by HPLC with on-line photochemical derivatization and fluorescence detection. Food Addit Contam 26:1402–1410

    Article  CAS  Google Scholar 

  • Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H (2008) Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinforma 4:653

    Article  Google Scholar 

  • Novas MV, Cabral D (2002) Association of mycotoxin and sclerotia production with compatibility groups in Aspergillus flavus from peanut in Argentina. Plant Dis 86:215–219

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI, Hocking AD, Glenn DR (1983) An improved medium for the detection of Aspergillus flavus and A. parasiticus. J Appl Bacteriol 54(1):109–114

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues P, Venâncio A, Kozakiewicz Z, Lima N (2009) A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of Aspergillus section Flavi isolated from Portuguese almonds. Int J Food Microbiol 129:187–193

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Machida S (1999) A rapid identification method for aflatoxin-producing strains of Aspergillus flavus and A. parasiticus by ammonia vapor. Mycoscience 40:205–208

    Article  Google Scholar 

  • Scherm B, Palomba M, Serra D, Marcello A, Migheli Q (2005) Detection of transcripts of the aflatoxin genes aflD, aflO, and aflP by reverse transcription–polymerase chain reaction allows differentiation of aflatoxin-producing and non-producing isolates of Aspergillus flavus and Aspergillus parasiticus. Int J Food Microbiol 98:201–210

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shapira R, Paster N, Eyal O, Menasherov M, Mett A, Salomon R (1996) Detection of aflatoxigenic molds in grains by PCR. Appl Environ Microbiol 62:3270–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty PH, Hald B, Jespersen L (2007) Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. Int J Food Microbiol 113(1):41–46

    Article  CAS  PubMed  Google Scholar 

  • Shier WT, Lao Y, Steele TW, Abbas HK (2005) Yellow pigments used in rapid identification of aflatoxin-producing Aspergillus strains are anthraquinones associated with the aflatoxin biosynthetic pathway. Bioorganic Chem 33:426–438

    Article  CAS  Google Scholar 

  • Singh K (1991) An illustrated manual on identification of some seed-borne Aspergilli, Fusaria, Penicillia and their mycotoxins. Danish Government Institute of Seed Pathology for Developing Countries, Copenhagen

    Google Scholar 

  • Sweeney MJ, Pàmies P, Dobson AD (2000) The use of reverse transcription-polymerase chain reaction (RT-PCR) for monitoring aflatoxin production in Aspergillus parasiticus 439. Int J Food Microbiol 56:97–103

    Article  CAS  PubMed  Google Scholar 

  • Tran-Dinh N, Pitt JI, Carter DA (1999) Molecular genotype analysis of natural toxigenic and nontoxigenic isolates of Aspergillus flavus and A. parasiticus. Mycol Res 103:1485–1490

    Article  CAS  Google Scholar 

  • Tran-Dinh N, Pitt JI, Markwell PJ (2014) Selection of non-toxigenic strains of Aspergillus flavus for biocontrol of aflatoxins in maize in Thailand. Biocontrol Sci. Technol. 24:652–661

    Article  Google Scholar 

  • Trucksess MW (2000) Natural toxins. In: Horwitz W (ed) Official methods of analysis of AOAC International, 17th edn. AOAC International, Gaithersburg

    Google Scholar 

  • Vipin AV, Rao R, Kurrey NK, Anu Appaiah KA, Venkateswaran G (2017) Protective effects of phenolics rich extract of ginger against aflatoxin B1-induced oxidative stress and hepatotoxicity. Biomed Pharmacother 91:415–424

    Article  CAS  Google Scholar 

  • Wei D, Zhou L, Selvaraj JN, Zhang C, Xing F, Zhao Y, Wang Y, Liu Y (2014) Molecular characterization of atoxigenic Aspergillus flavus isolates collected in China. J Microbiol 52:559–565

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl 18:315–322

    Google Scholar 

  • Yin Y, Lou T, Yan L, Michailides TJ, Ma Z (2009) Molecular characterization of toxigenic and atoxigenic Aspergillus flavus isolates, collected from peanut fields in China. J Appl Microbiol 107:1857–1865

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Chang P-K, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, CSIR- Central Food Technological Research Institute, for providing necessary facilities to carry out this study and CSIR for the financial support in the form of Junior and senior research fellowship to the first author. Authors would also like to thank Dr. Anu Appaiah K. A., Principal scientist, Microbiology and Fermentation Technology, CSIR-CFTRI, for his kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Venkateswaran.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2020_1822_MOESM1_ESM.docx

Fig.S1. Screening and isolation Aspergillus flavus from soil and seed samples. a. Screening through standard plate method; b. Screening through standard blotter method; c.Aspergillus flavus on PDA; d. Microscopic view of A. flavus; e. Culture methods to differentiate aflatoxigenic and non-aflatoxigenic A. flavusi. Ultraviolet test; ii. Ammonia vapor test; iii. Yellow pigmentation (DOCX 1015 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K.R., Vipin, A.V. & Venkateswaran, G. Molecular profile of non-aflatoxigenic phenotype in native strains of Aspergillus flavus. Arch Microbiol 202, 1143–1155 (2020). https://doi.org/10.1007/s00203-020-01822-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01822-1

Keywords

Navigation