Skip to main content

Advertisement

Log in

Automated Meningioma Segmentation in Multiparametric MRI

Comparable Effectiveness of a Deep Learning Model and Manual Segmentation

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Volumetric assessment of meningiomas represents a valuable tool for treatment planning and evaluation of tumor growth as it enables a more precise assessment of tumor size than conventional diameter methods. This study established a dedicated meningioma deep learning model based on routine magnetic resonance imaging (MRI) data and evaluated its performance for automated tumor segmentation.

Methods

The MRI datasets included T1-weighted/T2-weighted, T1-weighted contrast-enhanced (T1CE) and FLAIR of 126 patients with intracranial meningiomas (grade I: 97, grade II: 29). For automated segmentation, an established deep learning model architecture (3D deep convolutional neural network, DeepMedic, BioMedIA) operating on all four MR sequences was used. Segmentation included the following two components: (i) contrast-enhancing tumor volume in T1CE and (ii) total lesion volume (union of lesion volume in T1CE and FLAIR, including solid tumor parts and surrounding edema). Preprocessing of imaging data included registration, skull stripping, resampling, and normalization. After training of the deep learning model using manual segmentations by 2 independent readers from 70 patients (training group), the algorithm was evaluated on 56 patients (validation group) by comparing automated to ground truth manual segmentations, which were performed by 2 experienced readers in consensus.

Results

Of the 56 meningiomas in the validation group 55 were detected by the deep learning model. In these patients the comparison of the deep learning model and manual segmentations revealed average dice coefficients of 0.91 ± 0.08 for contrast-enhancing tumor volume and 0.82 ± 0.12 for total lesion volume. In the training group, interreader variabilities of the 2 manual readers were 0.92 ± 0.07 for contrast-enhancing tumor and 0.88 ± 0.05 for total lesion volume.

Conclusion

Deep learning-based automated segmentation yielded high segmentation accuracy, comparable to manual interreader variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FLAIR:

Fluid-attenuated inversion recovery

T1CE:

T1-weighted gadolinium contrast enhanced

WHO:

World Health Organization

References

  1. DeAngelis LM. Brain tumors. N Engl J Med. 2001;344:114–23.

    Article  CAS  Google Scholar 

  2. Schob S, Frydrychowicz C, Gawlitza M, Bure L, Preuß M, Hoffmann KT, Surov A. Signal intensities in preoperative MRI do not reflect proliferative activity in meningioma. Transl Oncol. 2016;9:274–9.

    Article  Google Scholar 

  3. Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, Niessen WJ, Breteler MM, van der Lugt A. Incidental findings on brain MRI in the general population. N Engl J Med. 2007;357:1821–8.

    Article  CAS  Google Scholar 

  4. Spasic M, Pelargos PE, Barnette N, Bhatt NS, Lee SJ, Ung N, Gopen Q, Yang I. Incidental meningiomas. Neurosurg Clin N Am. 2016;27:229–38.

    Article  Google Scholar 

  5. Yao A, Pain M, Balchandani P, Shrivastava RK. Can MRI predict meningioma consistency?: a correlation with tumor pathology and systematic review. Neurosurg Rev. 2018;41:745–53.

    Article  PubMed  Google Scholar 

  6. Goldbrunner R, Minniti G, Preusser M, Jenkinson MD, Sallabanda K, Houdart E, von Deimling A, Stavrinou P, Lefranc F, Lund-Johansen M, Moyal EC, Brandsma D, Henriksson R, Soffietti R, Weller M. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016;17:e383–91.

    Article  Google Scholar 

  7. Chang V, Narang J, Schultz L, Issawi A, Jain R, Rock J, Rosenblum M. Computer-aided volumetric analysis as a sensitive tool for the management of incidental meningiomas. Acta Neurochir (Wien). 2012;154:589–97.

    Article  Google Scholar 

  8. Fountain DM, Soon WC, Matys T, Guilfoyle MR, Kirollos R, Santarius T. Volumetric growth rates of meningioma and its correlation with histological diagnosis and clinical outcome: a systematic review. Acta Neurochir (Wien). 2017;159:435–45.

    Article  Google Scholar 

  9. Zeidman LA, Ankenbrandt WJ, Du H, Paleologos N, Vick NA. Growth rate of non-operated meningiomas. J Neurol. 2008;255:891–5.

    Article  CAS  Google Scholar 

  10. Xue Y, Chen S, Qin J, Liu Y, Huang B, Chen H. Application of deep learning in automated analysis of molecular images in cancer: a survey. Contrast Media Mol Imaging. 2017;2017:9512370.

    Article  Google Scholar 

  11. Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging. 2017;30:449–59.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mazzara GP, Velthuizen RP, Pearlman JL, Greenberg HM, Wagner H. Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int J Radiat Oncol Biol Phys. 2004;59:300–12.

    Article  Google Scholar 

  13. Lotan E, Jain R, Razavian N, Fatterpekar GM, Lui YW. State of the art: machine learning applications in glioma imaging. AJR Am J Roentgenol. 2019;212:26–37.

    Article  PubMed  Google Scholar 

  14. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp Ç, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SM, Ryan M, Sarikaya D, Schwartz L, Shin HC, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Van Leemput K. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 2015;34:1993–2024.

    Article  Google Scholar 

  15. Baessler B, Mannil M, Oebel S, Maintz D, Alkadhi H, Manka R. Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images. Radiology. 2018;286:103–12.

    Article  Google Scholar 

  16. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2016;36:61–78.

    Article  Google Scholar 

  17. Laukamp KR, Thiele F, Shakirin G, Zopfs D, Faymonville A, Timmer M, Maintz D, Perkuhn M, Borggrefe J. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Eur Radiol. 2019;29:124–32.

    Article  PubMed  Google Scholar 

  18. Perkuhn M, Stavrinou P, Thiele F, Shakirin G, Mohan M, Garmpis D, Kabbasch C, Borggrefe J. Clinical evaluation of a multiparametric deep learning model for glioblastoma segmentation using heterogeneous magnetic resonance imaging data from clinical routine. Invest Radiol. 2018;53:647–54.

    Article  Google Scholar 

  19. Kickingereder P, Isensee F, Tursunova I, Petersen J, Neuberger U, Bonekamp D, Brugnara G, Schell M, Kessler T, Foltyn M, Harting I, Sahm F, Prager M, Nowosielski M, Wick A, Nolden M, Radbruch A, Debus J, Schlemmer HP, Heiland S, Platten M, von Deimling A, van den Bent MJ, Gorlia T, Wick W, Bendszus M, Maier-Hein KH. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 2019;20:728–40.

    Article  Google Scholar 

  20. Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, den Heeten A, Karssemeijer N. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2017;35:303–12.

    Article  Google Scholar 

  21. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  Google Scholar 

  22. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  Google Scholar 

  23. Lindemann F, Laukamp KR, Jacobs A, Hinrichs KH. Interactive comparative visualization of multimodal brain tumor segmentation data. Vision, modeling, and visualization. 2013. pp. 105–12.

    Google Scholar 

  24. GitHub. DeepMedic. 2019. https://github.com/deepmedic. Accessed 21 Nov 2019.

  25. Crum WR, Camara O, Hill DLG. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging. 2006;25:1451–61.

    Article  Google Scholar 

  26. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.

    Article  Google Scholar 

  27. Hoseini F, Shahbahrami A, Bayat P. An efficient implementation of deep convolutional neural networks for MRI segmentation. J Digit Imaging. 2018;31:738–47.

    Article  Google Scholar 

  28. Shimol EB, Joskowicz L, Eliahou R, Shoshan Y. Computer-based radiological longitudinal evaluation of meningiomas following stereotactic radiosurgery. Int J Comput Assist Radiol Surg. 2018;13:215–28.

    Article  Google Scholar 

  29. Laukamp KR, Lindemann F, Weckesser M, Hesselmann V, Ligges S, Wölfer J, Jeibmann A, Zinnhardt B, Viel T, Schäfers M, Paulus W, Stummer W, Schober O, Jacobs AH. Multimodal imaging of patients with gliomas confirms (11)C-MET PET as a complementary marker to MRI for noninvasive tumor grading and intraindividual follow-up after therapy. Mol Imaging. 2017;16:1536012116687651.

    Article  Google Scholar 

  30. Sauwen N, Acou M, Bharath HN, Sima DM, Veraart J, Maes F, Himmelreich U, Achten E, Van Huffel S. The successive projection algorithm as an initialization method for brain tumor segmentation using non-negative matrix factorization. PLoS One. 2017;12:e180268.

    Article  Google Scholar 

  31. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA. Magnetic resonance fingerprinting. Nature. 2013;495:187–92.

    Article  CAS  Google Scholar 

  32. Badve C, Yu A, Dastmalchian S, Rogers M, Ma D, Jiang Y, Margevicius S, Pahwa S, Lu Z, Schluchter M, Sunshine J, Griswold M, Sloan A, Gulani V. MR fingerprinting of adult brain tumors: initial experience. AJNR Am J Neuroradiol. 2017;38:492–9.

    Article  CAS  Google Scholar 

  33. Laukamp KR, Shakirin G, Baeßler B, Thiele F, Zopfs D, Hokamp NG, Timmer M, Kabbasch C, Perkuhn M, Borggrefe J. Accuracy of radiomics-based feature analysis on multiparametric MR images for non-invasive meningioma grading. World Neurosurg. 2019;132:e366–90.

    Article  Google Scholar 

  34. Latini F, Larsson EM, Ryttlefors M. Rapid and accurate MRI segmentation of peritumoral brain edema in meningiomas. Clin Neuroradiol. 2017;27:145–52.

    Article  CAS  Google Scholar 

  35. Otero-Rodriguez A, Tabernero MD, Munoz-Martin MC, Sousa P, Orfao A, Pascual-Argente D, Gonzalez-Tablas M, Ruiz-Martin L. Re-evaluating Simpson grade I, II, and III resections in neurosurgical treatment of world health organization grade I meningiomas. World Neurosurg. 2016;96:483–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Roman Laukamp.

Ethics declarations

Conflict of interest

G. Shakirin, F. Thiele, M. Perkuhn are Philips employees. J. Borggrefe received an honorarium from Philips for scientific lectures. K.R. Laukamp, L. Pennig, R. Reimer, L. Goertz, D. Zopfs and M. Timmer declare that they have no competing interests.

Additional information

Patient population

Of the 126 patients included in this study 56 have been analyzed previously by this group and published in 2018 in European Radiology, where they also served as segmentation ground truth. To improve comparability between the deep learning models used in this study and in order to determine whether retraining by a specific tumor type is warranted, the former cohort was used again as segmentation ground truth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laukamp, K.R., Pennig, L., Thiele, F. et al. Automated Meningioma Segmentation in Multiparametric MRI. Clin Neuroradiol 31, 357–366 (2021). https://doi.org/10.1007/s00062-020-00884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-020-00884-4

Keywords

Navigation