Skip to main content
Log in

Phylogenetic analysis of achaete–scute complex genes in metazoans

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Achaete–scute complex (ASC) genes play essential roles in regulating neurogenesis of metazoans. Various metazoan species have greatly different numbers of genes in ASCa, ASCb and ASCc families. To explore evolutionary mechanisms of metazoan ASC genes, Blast (basic local alignment search tool) searches and phylogenetic analyses were conducted to identify ASC genes in metazoan species and to infer phylogenetic relationship between various ASC genes. As a result, 2784 ASC genes were identified in 804 metazoan species. The phylogenetic tree constructed using 1237 unique bHLH motifs shows that metazoan ASCa, ASCb and ASCc families contain six (a1a6), five (b1b5) and three (c1c3) bHLH genes, respectively. Further phylogenetic analyses suggest that ASC genes in metazoans are derived from a primitive c gene, those in insects are derived from c2 gene, and those in chordates are derived from a2 and a3 genes. Data of gene linkage demonstrate that insect a6 is derived from a4 but not from a5, and chordate a2 is ancestral to b5 only, whilst a3 is ancestral to both b3 and b5. It is concluded that current ASC gene families in metazoans were established through a series of sub- and/or neo-functionalization to duplicated ancestral ASC gene(s). These results provide good references for exploring evolutionary mechanisms of other bHLH genes in metazoans. Besides, gene subtyping is considered as an efficient method for evolutionary studies on closely related homologous genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atchley WR, Fitch WM (1997) A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA 94:5172–5176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker NE, Brown NL (2018) All in the family: proneural bHLH genes and neuronal diversity. Development 145:dev159426. https://doi.org/10.1242/dev.159426

  • Bao Y, Xu F, Shimeld SM (2017) Phylogenetics of Lophotrochozoan bHLH genes and the evolution of lineage-specific gene duplicates. Genome Biol Evol 9:869–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Gotz M (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 27:8654–8664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bullard T, Koek L, Roztocil E, Kingsley PD, Mirels L, Ovitt CE (2008) Ascl3 expression marks a progenitor population of both acinar and ductal cells in mouse salivary glands. Dev Biol 320:72–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmena A, Bate M, Jimenez F (1995) lethal of scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis. Genes Dev 9:2373–2383

    CAS  PubMed  Google Scholar 

  • Carramolino L, Ruiz-Gomez M, Guerrero MD, Campuzano S, Modolell J (1982) DNA map of mutations at the scute locus of Drosophila melanogaster. Embo J 1:1185–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WH, Lai AG (2018) Genome-wide analyses of the bHLH superfamily in crustaceans: reappraisal of higher-order groupings and evidence for lineage-specific duplications. R Soc Open Sci 5:172433

    PubMed  PubMed Central  Google Scholar 

  • Cubas P, De Celis JF, Campuzano S, Modolell J (1991) Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev 5:996–1008

    CAS  PubMed  Google Scholar 

  • Dang CW, Wang Y, Chen KP, Yao Q, Zhang DB, Guo M (2011) The basic helix-loop-helix transcription factor family in the pea aphid Acyrthosiphon pisum. J Insect Sci 11:84

    PubMed  PubMed Central  Google Scholar 

  • Delidakis C, Monastirioti M, Magadi SS (2014) E(spl): genetic, developmental, and evolutionary aspects of a group of invertebrate Hes proteins with close ties to Notch signaling. Curr Top Dev Biol 110:217–262

    CAS  PubMed  Google Scholar 

  • Deshpande G, Stukey J, Schedl P (1995) scute (sis-b) function in Drosophila sex determination. Mol Cell Biol 15:4430–4440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doonan R, Hatzold J, Raut S, Conradt B, Alfonso A (2008) HLH-3 is a C. elegans Achaete/Scute protein required for differentiation of the hermaphrodite-specific motor neurons. Mech Dev 125:883–893

    CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finet C, Decaras A, Armisén D, Khila A (2018) The achaete-scute complex contains a single gene that controls bristle development in the semi-aquatic bugs. Proc Biol Sci 285(1892). https://doi.org/10.1098/rspb.2018.2387

  • Garcia-Bellido A (1979) Genetic analysis of the Achaete-Scute system of Drosophila melanogaster. Genetics 91:491–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Bellido A, De Celis JF (2009) The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development. Genetics 182:631–639

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez F, Romani S, Cubas P, Modolell J, Campuzano S (1989) Molecular analysis of the asense gene, a member of the achaete-scute complex of Drosophila melanogaster, and its novel role in optic lobe development. Embo J 8:3553–3562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gyoja F, Satoh N (2013) Evolutionary aspects of variability in bHLH orthologous families: insights from the pearl oyster, Pinctada fucata. Zoolog Sci 30:868–876

    CAS  PubMed  Google Scholar 

  • Hahn ME, Karchner SI, Merson RR (2017) Diversity as opportunity: insights from 600 million years of AHR evolution. Curr Opin Toxicol 2:58–71

    PubMed  PubMed Central  Google Scholar 

  • He B, Chiba Y, Li H, de Vega S, Tanaka K, Yoshizaki K et al (2019) Identification of the novel tooth-specific transcription factor AmeloD. J Dent Res 98:234–241

    CAS  PubMed  Google Scholar 

  • Johnson NAN, Wang Y, Zeng Z, Wang GD, Yao Q, Chen KP (2019) Phylogenetic analysis and classification of insect achaete–scute complex genes. J Asia-Pacific Entomol 22:398–403

    Google Scholar 

  • Jones S (2004) An overview of the basic helix-loop-helix proteins. Genome Biol 5:226

    PubMed  PubMed Central  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Jonsson M, Bjorntorp Mark E, Brantsing C, Brandner JM, Lindahl A, Asp J (2004) Hash4, a novel human achaete-scute homologue found in fetal skin. Genomics 84:859–866

    CAS  PubMed  Google Scholar 

  • Ledent V, Vervoort M (2001) The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 11:754–770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ledent V, Paquet O, Vervoort M (2002) Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol 3:Research0030

  • Liu W, Chen D (2013) Phylogeny, functional annotation, and protein interaction network analyses of the Xenopus tropicalis basic helix-loop-helix transcription factors. Biomed Res Int 2013:145037. https://doi.org/10.1155/2013/145037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WY, Zhao CJ (2010) Genome-wide identification and analysis of the chicken basic helix-loop-helix factors. Comp Funct Genomics 2010:682095

    PubMed Central  Google Scholar 

  • Liu AK, Wang Y, Zhang DB, Wang XH, Song HF, Dang CW, Yao Q, Chen KP (2013) Classification and evolutionary analysis of the basic helix-loop-helix gene family in the green anole lizard, Anolis carolinensis. Mol Genet Genomics 288:365–380

    CAS  PubMed  Google Scholar 

  • Liu XT, Wang Y, Wang XH, Tao XF, Yao Q, Chen KP (2015) A genome-wide identification and classification of basic helix-loop-helix genes in the jewel wasp, Nasonia vitripennis (Hymenoptera: Pteromalidae). Genome 57:525–536

    Google Scholar 

  • Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R (2013) Gene duplication as a major force in evolution. J Genet 92:155–161

    PubMed  Google Scholar 

  • Massari ME, Murre C (2000) Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Mol Cell Biol 20:429–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mei Q, Dvornyk V (2014) Evolution of PAS domains and PAS-containing genes in eukaryotes. Chromosoma 123:385–405

    CAS  PubMed  Google Scholar 

  • Miki M, Ball DW, Linnoila RI (2012) Insights into the achaete-scute homolog-1 gene (hASH1) in normal and neoplastic human lung. Lung Cancer 75:58–65

    PubMed  Google Scholar 

  • Moore AW, Barbel S, Jan LY, Jan YN (2000) A genomewide survey of basic helix-loop-helix factors in Drosophila. Proc Natl Acad Sci USA 97:10436–10441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Negre B, Simpson P (2015) The achaete-scute complex in Diptera: patterns of noncoding sequence evolution. J Evol Biol 28:1770–1781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park NI, Guilhamon P, Desai K, McAdam RF, Langille E, O'Connor M et al (2017) ASCL1 reorganizes chromatin to direct neuronal fate and suppress tumorigenicity of glioblastoma stem cells. Cell Stem Cell 21:411

    CAS  PubMed  Google Scholar 

  • Peng Y, Wang Y, Tao XF, Zeng Z, Johnson NAN, Yao Q, Chen KP (2017) A genome-wide survey and analysis of basic helix-loop-helix genes in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). J Asia Pac Entomol 20:821–829

    Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    CAS  PubMed  Google Scholar 

  • Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D, Vervoort M (2007) Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol 7:33

    PubMed  PubMed Central  Google Scholar 

  • Skaer N, Pistillo D, Gibert JM, Lio P, Wülbeck C, Simpson P (2002) Gene duplication at the achaete-scute complex and morphological complexity of the peripheral nervous system in Diptera. Trends Genet 18:399–405

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Gertsenstein M, Rossant J, Nagy A (1997) Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev Biol 190:55–65

    CAS  PubMed  Google Scholar 

  • Wan PJ, Yuan SY, Wang WX, Chen X, Lai FX, Fu Q (2016) A genome-wide identification and analysis of the basic helix-loop-helix transcription factors in brown planthopper Nilaparvata lugens. Genes (Basel) 7:100. https://doi.org/10.3390/genes7110100

    Article  CAS  Google Scholar 

  • Wang Y, Chen KP, Yao Q, Wang WB, Zhu Z (2007) The basic helix-loop-helix transcription factor family in Bombyx mori. Dev Genes Evol 217:715–723

    CAS  PubMed  Google Scholar 

  • Wang Y, Chen KP, Yao Q, Zheng XD, Yang Z (2009) Phylogenetic analysis of zebrafish basic helix-loop-helix transcription factors. J Mol Evol 68:629–640

    CAS  PubMed  Google Scholar 

  • Weng PL, Vinjamuri M, Ovitt CE (2016) Ascl3 transcription factor marks a distinct progenitor lineage for non-neuronal support cells in the olfactory epithelium. Sci Rep 6:38199. https://doi.org/10.1038/srep38199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler SR (2003) The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification. Dev 130:4373–4381

    CAS  Google Scholar 

  • Zeng Z, Wang Y, Johnson NAN, Wang GD, Yao Q, Chen KP (2018) Identification and phylogenetic analysis of basic helix-loop-helix genes in the diamondback moth. J Insect Sci 18:57

    Google Scholar 

  • Zhang JZ (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Google Scholar 

  • Zhang DB, Wang Y, Liu AK, Wang XH, Dang CW, Yao Q, Chen KP (2013) Phylogenetic analyses of vector mosquito basic helix-loop-helix transcription factors. Insect Mol Biol 22:608–621

    CAS  PubMed  Google Scholar 

  • Zhou Q, Zhang T, Xu W, Yu L, Yi Y, Zhang Z (2008) Analysis of four achaete-scute homologs in Bombyx mori reveals new viewpoints of the evolution and functions of this gene family. BMC Genet 9:24

    PubMed  PubMed Central  Google Scholar 

  • Zuo QS, Wang J, Chen C, Zhang Y, Feng DX, Zhao RH, Chen T (2018) ASCL2 expression contributes to gastric tumor migration and invasion by downregulating miR223 and inducing EMT. Mol Med Rep 18:3751–3759

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 31872425 and 31861143051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1

Taxonomic information of 804 metazoan species and bHLH motifs of achaete–scute complex genes in various metazoan phyla. This Microsoft Excel file contains 18 worksheets, each of which stores survey data of a specific metazoan phylum. The worksheets are ordered in accordance with metazoan phyla shown in Table 2. Individual metazoan species is numbered using a capital letter (to indicate which phylum it belongs to) plus a number. For each species, hierarchical taxonomic information, ASC genes and their correspondent bHLH motifs, protein accession numbers and coding region(s) are listed. If coding regions of different ASC genes are on the same contig, “at # k” is added after the contig number to indicate relative locus of an ASC gene. P1 and P2 mean phase of the first and the second intron, in which p0, p1 and p2 stand for phase 0, phase 1 and phase 2, respectively. L1 and L2 mean length of the first and the second intron in base pairs. (PDF 271 kb)

Figure S1

Maximum-likelihood phylogenetic tree of metazoan achaete–scute complex genes. The tree was constructed using amino acids of 1237 unique metazoan bHLH motifs which are different with each other. Three bHLH motifs of Max (Myc associated factor x) protein from roundworm (C. elegans), fruit fly (D. melanogaster) and mouse (M. musculus) were used as outgroup. Max genes belong to higher-order group B in the bHLH superfamily. Since bHLH genes of group B are paraphyletic and closest to the ancestral bHLH type from which groups A, C, D, E, and F bHLH arise (Ledent and Vervoort 2001), they are frequently used as outgroup for phylogenetic analysis of bHLH genes. Tree branches are shown in different colors to indicate separate phyletic clades formed by different ASC gene subtypes. Sequence names are composed of species number and ASC gene version, both of which are listed in supplementary file 1. For simplicity, only bootstrap values of over 50% are shown in the tree, and branch lengths are not proportional to distances between sequences (XLSX 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, GD., He, QL. et al. Phylogenetic analysis of achaete–scute complex genes in metazoans. Mol Genet Genomics 295, 591–606 (2020). https://doi.org/10.1007/s00438-020-01648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01648-y

Keywords

Navigation