Skip to main content

Advertisement

Log in

Cell Communication Network Factor 4 (CCN4/WISP1) Shifts Melanoma Cells from a Fragile Proliferative State to a Resilient Metastatic State

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Cellular communication network factor 4 (CCN4/WISP1) is a secreted matricellular protein that stimulates metastasis in multiple malignancies but has an unclear impact on phenotypic changes in melanoma. Recent data using cells edited via a double-nickase CRISPR/Cas9 approach suggest that CCN4/WISP1 stimulates invasion and metastasis of melanoma cells. While these data also suggest that loss of CCN4/WISP1 increases cell proliferative, the CRISPR approach used may be an alternative explanation rather than the loss of gene function.

Methods

To test whether CCN4/WISP1 also influences the proliferative phenotype of melanoma cells, we used mouse melanoma models and knocked out Ccn4 using a homology-directed repair CRISPR/Cas9 system to generate pools of Ccn4-knockout cells. The resulting edited cell pools were compared to parental cell lines using an ensemble of in vitro and in vivo assays.

Results

In vitro assays using knockout pools supported previous findings that CCN4/WISP1 promoted an epithelial–mesenchymal-like transition in melanoma cells and stimulated invasion and metastasis. While Ccn4 knockout also enhanced cell growth in optimal 2D culture conditions, the knockout suppressed certain cell survival signaling pathways and rendered cells less resistant to stress conditions. Tumor cell growth assays at sub-optimal conditions in vitro, quantitative analysis of tumor growth assays in vivo, and transcriptomics analysis of human melanoma cell lines were also used to quantify changes in phenotype and generalize the findings.

Conclusions

In addition to stimulating invasion and metastasis of melanoma cells, the results suggested that CCN4/WISP1 repressed cell growth and simultaneously enhanced cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

CCLE:

Cancer Cell Line Encyclopedia

CCN4:

Cell Communication Network factor 4

CMV:

Cytomegalovirus

CRISPR:

Clustered regularly interspaced short palindromic repeats

ELISA:

Enzyme-linked immunosorbent assay

EMT:

Epithelial-mesenchymal transition

GFP:

Green fluorescent protein

HDR:

Homology-directed repair

KO:

Knock-out

NSG:

NOD-scid IL2Rgammanull

References

  1. Aladowicz, E., L. Ferro, G. C. Vitali, E. Venditti, L. Fornasari, and L. Lanfrancone. Molecular networks in melanoma invasion and metastasis. Future Oncol. 9:713–726, 2013.

    Article  Google Scholar 

  2. American Cancer Society. Cancer Facts & Figures 2017. Atlanta: American Cancer Society, 2017.

    Google Scholar 

  3. Berschneider, B., and M. Königshoff. WNT1 inducible signaling pathway protein 1 (WISP1): a novel mediator linking development and disease. Int. J. Biochem. Cell Biol. 43:306–309, 2011.

    Article  Google Scholar 

  4. Colston, J. T., et al. Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. Am. J. Physiol. Hear. Circ. Physiol. 293:H1839–H1846, 2007.

    Article  Google Scholar 

  5. Damsky, W. E., N. Theodosakis, and M. Bosenberg. Melanoma metastasis: new concepts and evolving paradigms. Oncogene 33:2413–2422, 2014.

    Article  Google Scholar 

  6. Deng, W., A. Fernandez, S. L. McLaughlin, and D. J. Klinke. WNT1-inducible signaling pathway protein 1 (WISP1/CCN4) stimulates melanoma invasion and metastasis by promoting the epithelial mesenchymal transition. J. Biol. Chem. 294:5261–5280, 2019.

    Article  Google Scholar 

  7. Deng, W., S. L. McLaughlin, and D. J. Klinke. Quantifying spontaneous metastasis in a syngeneic mouse melanoma model using real time PCR. Analyst 142:2945–2953, 2017.

    Article  Google Scholar 

  8. Deng, W., D. B. Vanderbilt, C.-C. Lin, K. H. Martin, K. M. Brundage, and J. M. Ruppert. SOX9 inhibits β-TrCP-mediated protein degradation to promote nuclear GLI1 expression and cancer stem cell properties. J. Cell Sci. 128:1123–1138, 2015.

    Article  Google Scholar 

  9. Desnoyers, L., D. Arnott, and D. Pennica. WISP-1 Binds to Decorin and Biglycan. J. Biol. Chem. 276:47599–47607, 2001.

    Article  Google Scholar 

  10. Fidler, I. J. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res. 35:218–224, 1975.

    Google Scholar 

  11. Frisch, S. M., and H. Francis. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124:619–626, 1994.

    Article  Google Scholar 

  12. Fujimoto, S., and M. Ogawa. Antitumor activity of mitoxantrone against murine experimental tumors: comparative analysis against various antitumor antibiotics. Cancer Chemother. Pharmacol. 8:157–162, 1982.

    Article  Google Scholar 

  13. Giuliano, C. J., A. Lin, J. C. Smith, A. C. Palladino, and J. M. Sheltzer. MELK expression correlates with tumor mitotic activity but is not required for cancer growth. Elife 7:e32838, 2018.

    Article  Google Scholar 

  14. Gurbuz, I., and R. Chiquet-Ehrismann. CCN4/WISP1 (WNT1 inducible signaling pathway protein 1): a focus on its role in cancer. Int. J. Biochem. Cell Biol. 62:142–146, 2015.

    Article  Google Scholar 

  15. Hashimoto, Y., et al. Expression of the Elm1 gene, a novel gene of the CCN (connective tissue growth factor, Cyr61/Cef10, and neuroblastoma overexpressed gene) family, suppresses in vivo tumor growth and metastasis of K-1735 murine melanoma cells. J. Exp. Med. 187:289–296, 1998.

    Article  Google Scholar 

  16. Hou, C.-H., Y.-C. Chiang, Y.-C. Fong, and C.-H. Tang. WISP-1 increases MMP-2 expression and cell motility in human chondrosarcoma cells. Biochem. Pharmacol. 81:1286–1295, 2011.

    Article  Google Scholar 

  17. Inkson, C. A., M. Ono, S. A. Kuznetsov, L. W. Fisher, P. G. Robey, and M. F. Young. TGF-β1 and WISP-1/CCN-4 can regulate each other’s activity to cooperatively control osteoblast function. J. Cell. Biochem. 104:1865–1878, 2008.

    Article  Google Scholar 

  18. Khan, G. N., E. J. Kim, T. S. Shin, and S. H. Lee. Heterogeneous cell types in single-cell-derived clones of MCF7 and MDA-MB-231 cells. Anticancer Res. 37:2343–2354, 2017.

    Article  Google Scholar 

  19. Klarquist, J. S., and E. M. Janssen. Melanoma-infiltrating dendritic cells. Oncoimmunology 1:1584–1593, 2012.

    Article  Google Scholar 

  20. Klinke, D. J. In silico model-based inference: a contemporary approach for hypothesis testing in network biology. Biotechnol. Prog. 30:1247–1261, 2014.

    Article  Google Scholar 

  21. Königshoff, M., et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J. Clin. Invest. 119:772–787, 2009.

    Google Scholar 

  22. Kosicki, M., K. Tomberg, and A. Bradley. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36:765, 2018.

    Article  Google Scholar 

  23. Kulkarni, Y. M., E. Chambers, A. J. R. McGray, J. S. Ware, J. L. Bramson, and D. J. Klinke, II. A quantitative systems approach to identify paracrine mechanisms that locally suppress immune response to Interleukin-12 in the B16 melanoma model. Integr. Biol. (Camb) 4:925–936, 2012.

    Article  Google Scholar 

  24. Li, F. Z., A. S. Dhillon, R. Anderson, G. McArthur, and P. T. Ferrao. Phenotype switching in melanoma: implications for progression and therapy. Front. Oncol. 5:31, 2015.

    Article  Google Scholar 

  25. Lindsay, C. R., P. Spiliopoulou, and A. Waterston. Blinded by the light: why the treatment of metastatic melanoma has created a new paradigm for the management of cancer. Ther. Adv. Med. Oncol. 7:107–121, 2015.

    Article  Google Scholar 

  26. Madeira, F., et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47:W636–W641, 2019.

    Article  Google Scholar 

  27. Nagai, Y., et al. Clinical significance of Wnt-induced secreted protein-1 (WISP-1/CCN4) in esophageal squamous cell carcinoma. Anticancer Res. 31:991–997, 2011.

    Google Scholar 

  28. Ono, M., C. A. Inkson, T. M. Kilts, and M. F. Young. WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity. J. Bone Miner. Res. 26:193–208, 2011.

    Article  Google Scholar 

  29. Pennica, D., et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc. Natl. Acad. Sci. U.S.A. 95:14717–14722, 1998.

    Article  Google Scholar 

  30. Schaefer, K. A., W.-H. Wu, D. F. Colgan, S. H. Tsang, A. G. Bassuk, and V. B. Mahajan. Unexpected mutations after CRISPR–Cas9 editing in vivo. Nat. Methods 14:547, 2017.

    Article  Google Scholar 

  31. Shao, H., L. Cai, J. M. Grichnik, A. S. Livingstone, O. C. Velazquez, and Z.-J. Liu. Activation of Notch1 signaling in stromal fibroblasts inhibits melanoma growth by upregulating WISP-1. Oncogene 30:4316–4326, 2011.

    Article  Google Scholar 

  32. Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2016. CA Cancer J. Clin. 66:7–30, 2016.

    Article  Google Scholar 

  33. Su, F., M. Overholtzer, D. Besser, and A. J. Levine. WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. Genes Dev. 16:46–57, 2002.

    Article  Google Scholar 

  34. Vandamme, N., and G. Berx. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity. Front. Oncol. 4:352, 2014.

    Article  Google Scholar 

  35. Venkatesan, B., et al. WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cell. Signal. 22:809–820, 2010.

    Article  Google Scholar 

  36. Wang, S., Z. Z. Chong, Y. C. Shang, and K. Maiese. Wnt1 inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/Akt1 and apoptotic mitochondrial signaling involving Bad, Bax, Bim, and Bcl-xL. Curr. Neurovasc. Res. 9:20–31, 2012.

    Article  Google Scholar 

  37. Wu, C.-L., et al. Ras activation mediates WISP-1-induced increases in cell motility and matrix metalloproteinase expression in human osteosarcoma. Cell. Signal. 25:2812–2822, 2013.

    Article  Google Scholar 

  38. Xu, L., R. B. Corcoran, J. W. Welsh, D. Pennica, and A. J. Levine. WISP-1 is a Wnt-1- and β-catenin-responsive oncogene. Genes Dev. 14:585–595, 2000.

    Google Scholar 

  39. Zhang, H., et al. Targeting WISP1 to sensitize esophageal squamous cell carcinoma to irradiation. Oncotarget 6:6218–6234, 2015.

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation (NSF CBET-1644932 to DJK) and National Cancer Institute (NCI 1R01CA193473 to DJK). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NSF or NCI. Small animal imaging and image analysis were performed in the West Virginia University Animal Models & Imaging Facility, which has been supported by the West Virginia University Cancer Institute and NIH Grants P20 RR016440 and P30RR032138/P30GM103488. No human studies were carried out by the authors for this article. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Conflict of interest

Wentao Deng, Audry Fernandez, Sarah L. McLaughlin, and David J. Klinke II declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Klinke II.

Additional information

Associate Editor Matthew Lazzara oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Fernandez, A., McLaughlin, S.L. et al. Cell Communication Network Factor 4 (CCN4/WISP1) Shifts Melanoma Cells from a Fragile Proliferative State to a Resilient Metastatic State. Cel. Mol. Bioeng. 13, 45–60 (2020). https://doi.org/10.1007/s12195-019-00602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-019-00602-2

Keywords

Navigation