Skip to main content

Advertisement

Log in

Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Increasing concentration of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in the soil may impose a serious threat to living organisms due to their toxicity and the ability to accumulate in plant tissues. The present review focuses on the phylogenetic relationships, sources, biotransformation and accumulation potential of hyperaccumulators for the priority HMs and PAHs. This review provides an opportunity to reveal the role of hyperaccumulators in removal of HMs and PAHs from soils, to understand the relationships between pollutants and their influence on the environment and to find potential plant species for soil remediation. The phylogenetic analysis results showed that the hyperaccumulators of some chemicals (Co, Cu, Mn, Ni, Zn, Cd) are clustered on the evolutionary tree and that the ability to hyperaccumulate different pollutants can be correlated either positively (Cd–Zn, Pb–Zn, Co–Cu, Cd–Pb) or negatively (Cu–PAHs, Co–Cd, Co–PAHs, Ni–PAHs, Cu–Ni, Mn–PAHs). Further research needs to be extended on the focus of commercializing the techniques including the native hyperaccumulators to remediate the highly contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123.

    Google Scholar 

  • Abhilash, P. C., Jamil, S., & Singh, N. (2009). Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnology Advances, 27(4), 474–488.

    CAS  Google Scholar 

  • Adki, V. S., Jadhav, J. P., & Bapat, V. A. (2013). Nopalea cochenillifera, a potential chromium(VI) hyperaccumulator plant. Environmental Science and Pollution Research, 20(2), 1173–1180.

    CAS  Google Scholar 

  • Akhbarizadeh, R., Moore, F., & Keshavarzi, B. (2019). Polycyclic aromatic hydrocarbons and potentially toxic elements in seafood from the Persian Gulf: Presence, trophic transfer, and chronic intake risk assessment. Environmental Geochemistry and Health, 41, 2803–2820.

    CAS  Google Scholar 

  • Alagić, S. Č., Maluckov, B. S., & Radojičić, V. B. (2014). How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Technologies and Environmental Policy, 17, 597–614.

    Google Scholar 

  • Alagić, S. Č., Stankov, J. V. P., Mitic, V. D., Nikolic, J. S., Petrovic, G. M., et al. (2017). The effect of multiple contamination of soil on LMW and MMW PAHs accumulation in the roots of Rubus fruticosus L. naturally growing near the copper mining and smelting complex bor (East Serbia). Environmental Science and Pollution Research, 24, 15609–15621.

    Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91, 869–881.

    CAS  Google Scholar 

  • Alves, W. S., Manoel, E. A., Santos, N. S., Nunes, R. O., Domiciano, G. C., et al. (2017). Detection of polycyclic aromatic hydrocarbons (PAHs) in Medicago sativa L. by fluorescence microscopy. Micron, 95, 23–30.

    CAS  Google Scholar 

  • Amarlal, A., Cruz, J. V., Cunha, R. T., & Rodrigues, A. (2006). Baseline levels of metals in volcanic soils of the Azores (Portugal). Journal on Soil and Sediment Contamination, 15, 123–130.

    Google Scholar 

  • Araim, G., Saleem, A., Arnason, J. T., & Charest, C. (2009). Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. Journal of Agricultural and Food Chemistry, 57(6), 2255–2258.

    CAS  Google Scholar 

  • Araki, R., Murata, J., & Murata, Y. (2011). A novel barley yellow stripe 1-like transporter (hvysl2) localized to the root endodermis transports metal phytosiderophore complexes. Plant and Cell Physiology, 52, 1931–1940.

    CAS  Google Scholar 

  • Azzolina, N. A., Kreitinger, J. P., Skorobogatov, Y., & Shaw, R. K. (2016). Background concentrations of PAHs and metals in surface and subsurface soils collected throughout Manhattan, New York. Environmental Forensics, 17(4), 294–310.

    CAS  Google Scholar 

  • Baker, A. J. M., Reeves, R. D., & Hajar, A. S. M. (1994). Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytologist, 127(1), 61–68.

    CAS  Google Scholar 

  • Bandowe, B. A. M., & Nkansah, M. A. (2016). Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. Science of the Total Environment, 553, 439–449.

    CAS  Google Scholar 

  • Barberon, M., Zelazny, E., Robert, S., Conejero, G., Curie, C., et al. (2011). Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proceedings of the National Academy of Sciences of the USA, 108, E450–E458.

    CAS  Google Scholar 

  • Barsova, N., Yakimenko, O., Tolpeshta, I., & Motuzova, G. (2019). Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environmental Pollution, 249, 200–207.

    CAS  Google Scholar 

  • Belinskaya, E. A., Zykova, G. V., Semenov, S. Y., & Finakov, G. G. (2015). Polycyclic aromatic hydrocarbons in the soils of Moscow. Eurasian Soil Science, 48(6), 578–583.

    CAS  Google Scholar 

  • Bernal, M., Casero, D., Singh, V., Wilson, G. T., Grande, A., et al. (2012). Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. The Plant Cell, 24, 738–761.

    CAS  Google Scholar 

  • Boojar, M. M. A., & Tavakkoli, Z. (2011). Antioxidative responses and metal accumulation in invasive plant species growing on mine tailings in Zanjan, Iran. Pedosphere, 21, 802–812.

    CAS  Google Scholar 

  • Brooks, R. R. (1977). Copper and cobalt uptake by Haumaniastrum species. Plant and Soil, 48(2), 541–544.

    CAS  Google Scholar 

  • Brooks, R. R., Wither, E. D., & Zepernick, B. (1977). Cobalt and nickel in Rinorea species. Plant and Soil, 47(3), 707–712.

    CAS  Google Scholar 

  • Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Díaz, C. E., & Vernon-Carter, E. J. (2010). Prosopis laevigata a potential chromium(VI) and cadmium(II) hyperaccumulator desert plant. Bioresource Technology, 101(15), 5862–5867.

    Google Scholar 

  • Bundesgesetzblatt. (2013). Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV). Bundesgesetzblatt I. https://doi.org/10.1002/9783527678495.hbbk2001005.

    Article  Google Scholar 

  • Burkhead, J. L., Gogolin-Reynolds, K. A., Abdel-Ghany, S. E., Cohu, C. M., & Pilon, M. (2009). Copper homeostasis. New Phytologist, 182, 799–816.

    CAS  Google Scholar 

  • Campos, V. M., Merino, I., Casado, R., Pacios, L. F., & Gómez, L. (2008). Phytoremediation of organic pollutants. Spanish Journal of Agricultural Research, 1, 38–47.

    Google Scholar 

  • Cao, Q., Wang, H., & Chen, G. (2011). Source apportionment of PAHs using two mathematical models for mangrove sediments in Shantou coastal zone, China. Estuaries and Coasts, 34(5), 950–960.

    CAS  Google Scholar 

  • Capozzi, F., Di-Palma, A., Adamo, P., Spagnuolo, V., & Giordano, S. (2017). Monitoring chronic and acute PAH atmospheric pollution using transplants of the moss Hypnum cupressiforme and Robinia pseudacacia leaves. Atmospheric Environment, 150, 45–54.

    CAS  Google Scholar 

  • Cerniglia, C. E. (1993). Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion in Biotechnology, 4(3), 331–338.

    CAS  Google Scholar 

  • Cerniglia, C. E., & Sutherland, J. B. (2010). Degradation of polycyclic aromatic hydrocarbons by fungi. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 2079–2110). Berlin: Springer.

    Google Scholar 

  • Chauhan, P., & Mathur, J. (2018). Potential of Helianthus annuus for phytoremediation of multiple pollutants in the environment: A review. Journal of Biological Sciences and Medicine, 4(3), 5–16.

    Google Scholar 

  • Chen, S. H., & Aitken, M. D. (1999). Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environmental Science and Technology, 33(3), 435–439.

    CAS  Google Scholar 

  • Chen, S., Wang, M., Li, S., Zhao, Z. Q., & Wen-di, E. (2018). Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in China. Journal of Integrative Agriculture, 17(4), 765–774.

    Google Scholar 

  • Chen, Y., Zhang, J., Ma, Q., Sun, C., Ha, S., & Zhang, F. (2016). Human health risk assessment and source diagnosis of polycyclic aromatic hydrocarbons (PAHs) in the corn and agricultural soils along main roadside in Changchun, China. Human and Ecological Risk Assessment: An International Journal, 22(3), 706–720.

    CAS  Google Scholar 

  • Chigbo, C., Batty, L., & Bartlett, R. (2013). Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper-pyrene cocontaminated soil. Chemosphere, 90, 2542–2548.

    CAS  Google Scholar 

  • Chroma, L., Mackova, M., Kucerova, P., In Der Wiesche, C., Burkhard, J., et al. (2002). Enzymes in plant metabolism of PCBs and PAHs. Acta Biotechnologica, 22(1–2), 35–41.

    CAS  Google Scholar 

  • Cohu, C. M., & Pilon, M. (2010). Cell biology of copper. In R. Hell & R. R. Mendel (Eds.), Cell biology of metals and nutrients. Plant cell monographs (Vol. 17, pp. 55–74). Berlin: Springer.

    Google Scholar 

  • Collins, C., Fryer, M., & Grosso, A. (2006). Plant uptake of non-ionic organic chemicals. Environmental Science and Technology, 40(1), 45–52.

    CAS  Google Scholar 

  • Colzi, I., Arnetoli, M., Gallo, A., Doumett, S., Del Bubba, M., et al. (2012). Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environmental and Experimental Botany, 78, 91–98.

    CAS  Google Scholar 

  • Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110(3), 715.

    CAS  Google Scholar 

  • Cutright, T., Gunda, N., & Kurt, F. (2010). Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. International Journal of Phytoremediation, 12(6), 562–573.

    CAS  Google Scholar 

  • Čvančarová, M., Křesinová, Z., & Cajthaml, T. (2013). Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils. Journal of Hazardous Materials, 254–255, 116–124.

    Google Scholar 

  • de la Rosa, G., Peralta-Videa, J. R., Montes, M., Parsons, J. G., Cano-Aguilera, I., et al. (2004). Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere, 55(9), 1159–1168.

    Google Scholar 

  • De Nicola, F., Baldantoni, D., Maisto, G., & Alfani, A. (2017). Heavy metal and polycyclic aromatic hydrocarbon concentrations in Quercus ilex L. leaves fit an a priori subdivision in site typologies based on human management. Environmental Science and Pollution Research, 24(13), 11911–11918.

    Google Scholar 

  • Deng, D. M., Deng, J. C., Li, J. T., Zhang, J., Hu, M., Lin, Z., et al. (2008). Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. Journal of Integrative Plant Biology, 50(6), 691–698.

    CAS  Google Scholar 

  • Dettenmaier, E. M., Doucette, W. J., & Bugbee, B. (2008). Chemical hydrophobicity and uptake by plant roots. Environmental Science and Technology, 43(2), 324–329.

    Google Scholar 

  • Dias, A. P. L., Rinaldi, M. C., & Domingos, M. (2016). Foliar accumulation of polycyclic aromatic hydrocarbons in native tree species from the Atlantic Forest (SE-Brazil). Science of the Total Environment, 544, 175–184.

    CAS  Google Scholar 

  • Dietz, A. C., & Schnoor, J. L. (2001). Advances in phytoremediation. Environmental Health Perspectives, 109(suppl 1), 163–168.

    CAS  Google Scholar 

  • DoŁęgowska, S., & Migaszewski, Z. M. (2011). PAH concentrations in the moss species Hylocomium splendens (Hedw.) BSG and Pleurozium schreberi (Brid.) Mitt. from the Kielce area (south-central Poland). Ecotoxicology and Environmental Safety, 74(6), 1636–1644.

    Google Scholar 

  • Duan, Y., Shen, G., Tao, S., Hong, J., Chen, Y., et al. (2015). Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China. Chemosphere, 127, 64–69.

    CAS  Google Scholar 

  • Duvigneaud, P., & Denaeyer-De Smet, S. (1963). Cuivre et vegetation au Katang. Bulletin de la Soci et e Royale de Botanique de Belgique, 96, 92–231.

    Google Scholar 

  • Eaton, R. W., & Chapman, P. J. (1992). Bacterial metabolism of naphthalene: Construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. Journal of Bacteriology, 174(23), 7542–7554.

    CAS  Google Scholar 

  • Fan, S. X., Li, P. J., Gong, Z. Q., He, N., Zhang, L. H., et al. (2007). Study on phytoremediation of phenanthrene-contaminated soil with alfalfa (Medicago sativa L.). Huan Jing Ke Xue, 28(9), 2080–2084.

    CAS  Google Scholar 

  • Fantke, P., & Jolliet, O. (2016). Life cycle human health impacts of 875 pesticides. The International Journal of Life Cycle Assessment, 21(5), 722–733.

    CAS  Google Scholar 

  • Faucon, M. P., Shutcha, M. N., & Meerts, P. (2007). Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: Influence of washing and metal concentrations in soil. Plant and Soil, 301(1–2), 29–36.

    CAS  Google Scholar 

  • Fellet, G., Pošćić, F., Licen, S., Marchiol, L., Musetti, R., et al. (2016). PAHs accumulation on leaves of six evergreen urban shrubs: A field experiment. Atmospheric Pollution Research, 7(5), 915–924.

    Google Scholar 

  • Feng, R., Wei, C., Tu, S., Tang, S., & Wu, F. (2011). Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: Evidence of plant uptake and subcellular distributions. Microchemical Journal, 97(1), 38–43.

    CAS  Google Scholar 

  • Gałuszka, A. (2007). Distribution patterns of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) BSG and Pleurozium schreberi (Brid.) Mitt. from different forest communities: A case study, south-central Poland. Chemosphere, 67(7), 1415–1422.

    Google Scholar 

  • Gan, S., Lau, E. V., & Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172(2–3), 532–549.

    CAS  Google Scholar 

  • Gao, Y., & Collins, C. D. (2009). Uptake pathways of polycyclic aromatic hydrocarbons in white clover. Environmental Science and Technology, 43(16), 6190–6195.

    CAS  Google Scholar 

  • Gaskin, S. E., & Bentham, R. H. (2010). Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Science of the Total Environment, 408(17), 3683–3688.

    CAS  Google Scholar 

  • Gaskin, S., Soole, K., & Bentham, R. (2008). Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil. International Journal of Phytoremediation, 10(5), 378–389.

    CAS  Google Scholar 

  • Gbeddy, G., Goonetilleke, A., Ayoko, G. A., & Egodawatta, P. (2019). Transformation and degradation of polycyclic aromatic hydrocarbons (PAHs) in urban road surfaces: Influential factors, implications and recommendations. Environmental Pollution, 257(2020), 113510.

    Google Scholar 

  • Getter, C. D., Ballou, T. G., & Koons, C. B. (1985). Effects of dispersed oil on mangroves synthesis of a seven-year study. Marine Pollution Bulletin, 16(8), 318–324.

    Google Scholar 

  • Ghaderian, S. M., & Ravandi, A. A. G. (2012). Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. Journal of Geochemical Exploration, 123, 25–32.

    CAS  Google Scholar 

  • Ghazaryan, K. A., Movsesyan, H. S., Khachatryan, H. E., Ghazaryan, N. P., Minkina, T. M., et al. (2018). Copper phytoextraction and phytostabilization potential of wild plant species growing in the mine polluted areas of Armenia. Geochemistry: Exploration, Environment, Analysis. https://doi.org/10.1144/geochem2018-035.

    Book  Google Scholar 

  • Ghazaryan, K. A., Movsesyan, H. S., Minkina, T. M., Sushkova, S. N., & Rajput, V. D. (2019). The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper- and molybdenum-polluted soils. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00338-y.

    Article  Google Scholar 

  • Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontiers in Microbiology, 7, 1369.

    Google Scholar 

  • Gong, Z., Alef, K., Wilke, B. M., & Li, P. (2005). Dissolution and removal of PAHs from a contaminated soil using sunflower oil. Chemosphere, 58(3), 291–298.

    CAS  Google Scholar 

  • Gorovtsov, A., Rajput, V., Minkina, T., Mandzhieva, S., Sushkova, S., et al. (2019a). The role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soils. Applied Geochemistry, 104, 93–101.

    Google Scholar 

  • Gorovtsov, A. V., Minkina, T. M., Mandzhieva, S. S., Perelomov, L. V., Soja, G., et al. (2019b). The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00412-5.

    Article  Google Scholar 

  • Ha, N. T. H., Sakakibara, M., Sano, S., & Nhuan, M. T. (2011). Uptake of metals and metalloids by plants growing in a lead–zinc mine area, Northern Vietnam. Journal of Hazardous Materials, 186(2–3), 1384–1391.

    Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169(1–3), 1–15.

    CAS  Google Scholar 

  • He, S. Y., He, Z. L., Yang, X. E., Stoffella, P. J., & Baligar, V. C. (2015). Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. Advances in Agronomy, 134, 135–225.

    Google Scholar 

  • Herbes, S. E., & Schwall, L. R. (1978). Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Applied and Environmental Microbiology, 35(2), 306–316.

    CAS  Google Scholar 

  • Hoang Ha, N. T., Sakakibara, M., Sano, S., Hori, R. S., & Sera, K. (2009). The potential of Eleocharis acicularis for phytoremediation: Case study at an abandoned mine site. Clean-Soil Air Water, 37, 203–208.

    Google Scholar 

  • Huang, S., Dai, C., Zhou, Y., Peng, H., Yi, K., et al. (2018). Comparisons of three plant species in accumulating polycyclic aromatic hydrocarbons (PAHs) from the atmosphere: A review. Environmental Science and Pollution Research, 25, 16548–16566.

    CAS  Google Scholar 

  • Hutchinson, T. C. (1979). Copper contamination of ecosystems caused by smelter activities. In J. O. Nriagu (Ed.), Copper in the environment. Part 1: ecogoloical cycling (pp. 451–502). New York: Wiley.

    Google Scholar 

  • Inam, E., Ibanga, F., & Essien, J. (2016). Bioaccumulation and cancer risk of polycyclic aromatic hydrocarbons in leafy vegetables grown in soils within automobile repair complex and environ in Uyo. Nigeria. Environmental Monitoring and Assessment, 188(12), 681.

    Google Scholar 

  • Jerina, D. M. (1983). Metabolism of aromatic hydrocarbons by the cytochrome P450 system and epoxide hydrolase. Drug Metabolism and Disposition, 11, 1–4.

    CAS  Google Scholar 

  • Jones, G. D., Droz, B., Greve, P., Gottschalk, P., Poffet, D., et al. (2017). Selenium in plants: Molecular, physiological, ecological and evolutionary aspects. Proceedings of the National Academy of Sciences. https://doi.org/10.1007/978-3-319-56249-0.

    Article  Google Scholar 

  • Jouanneau, Y., Willison, J. C., Meyer, C., Krivobok, S., Chevron, N., et al. (2005). Stimulation of pyrene mineralization in freshwater sediments by bacterial and plant bioaugmentation. Environmental Science and Technology, 39(15), 5729–5735.

    CAS  Google Scholar 

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kabata-Pendias, A., & Szteke, B. (2015). Trace elements in abiotic and biotic environments. London: CRC Press.

    Google Scholar 

  • Kacálková, L., & Tlustoš, P. (2011). The uptake of persistent organic pollutants by plants. Central European Journal of Biology, 6(2), 223–235.

    Google Scholar 

  • Kashem, M. A., Singh, B. R., Kubota, H., Nagashima, R. S., Kitajima, N., Kondo, T., et al. (2007). Assessing the potential of Arabidopsis halleri ssp. gemmifera as a new cadmium hyperaccumulator grown in hydroponics. Canadian Journal of Plant Science, 87(3), 499–502.

    CAS  Google Scholar 

  • Kaur, R., Yadav, P., Kohli, S. K., Kumar, V., Bakshi, P., et al. (2019). Emerging trends and tools in transgenic plant technology for phytoremediation of toxic metals and metalloids. In M. N. V. Prasad (Ed.), Transgenic plant technology for remediation of toxic metals and metalloids. Cambridge: Academic Press. https://doi.org/10.1016/b978-0-12-814389-6.00004-3.

    Chapter  Google Scholar 

  • Keyte, I., Wild, E., Dent, J., & Jones, K. C. (2009). Investigating the foliar uptake and within-leaf migration of phenanthrene by moss (Hypnum cupressiforme) using two-photon excitation microscopy with autofluorescence. Environmental Science and Technology, 43(15), 5755–5761.

    CAS  Google Scholar 

  • Khan, S., Aijun, L., Zhang, S., Hu, Q., & Zhu, Y. G. (2008). Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. Journal of Hazardous Materials, 152(2), 506–515.

    CAS  Google Scholar 

  • Kmentova, E. (2003). Response of plant to fluoranthene in environment. Doctoral dissertation, Ph.D thesis, Masaryk University, Brno, Czech Republic.

  • Kochian, L. V., Pence, N. S., Letham, D. L. D., Pineros, M. A., Magalhaes, J. V., et al. (2002). Mechanisms of metal resistance in plants: Aluminum and heavy metals. Plant and Soil, 247, 109–119.

    CAS  Google Scholar 

  • Korte, F., Kvesitadze, G., Ugrekhelidze, D., Gordeziani, M., Khatisashvili, G., et al. (2000). Organic toxicants and plants. Ecotoxicology and Environmental Safety, 47(1), 1–26.

    CAS  Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World maps of Köppen-Geiger climate classification updated. Meteorologische Zeitschrift. https://doi.org/10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  • Kovalevsky, A. L. (1991). Biogeochemistry of plants (p. 294). Novosibirsk: Nauka. (in Russian).

    Google Scholar 

  • Krzebietke, S. J., Wierzbowska, J., Żarczyński, P. J., Sienkiewicz, S., Bosiacki, M., et al. (2018). Content of PAHs in soil of a hazel orchard depending on the method of weed control. Environmental Monitoring and Assessment, 190(7), 422.

    CAS  Google Scholar 

  • Kubota, H., & Takenaka, C. (2003). Field note: Arabis gemmifera is a hyperaccumulator of Cd and Zn. International Journal of Phytoremediation, 5(3), 197–201.

    CAS  Google Scholar 

  • Küpper, H., & Kochian, L. V. (2010). Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytologist, 185(1), 114–129.

    Google Scholar 

  • Küpper, H., Götz, B., Mijovilovich, A., Küpper, F. C., & Meyer-Klaucke, W. (2009). Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiology, 151(2), 702–714.

    Google Scholar 

  • Kvesitadze, E., Sadunishvili, T., & Kvesitadze, G. (2009). Mechanisms of organic contaminants uptake and degradation in plants. World Academy of Science, Engineering and Technology, 55(6), 458–468.

    Google Scholar 

  • Lange, B., van der Ent, A., Baker, A. J., Echevarria, G., Mahy, G., et al. (2016). Copper and cobalt accumulation in plants: A critical assessment of the current state of knowledge. New Phytologist, 213(2), 537–551.

    Google Scholar 

  • Leary, S. C., & Winge, D. R. (2007). The Janus face of copper: Its expanding roles in biology and the pathophysiology of disease. EMBO Reports, 8, 224–227.

    CAS  Google Scholar 

  • Lepp, N. W., & Dickinson, N. M. (1987). Partitioning and transport of copper in various components of Kenyan Coffea arabica stands. In P. J. Coughtrey, M. H. Martin, & M. H. Unsworth (Eds.), Pollutant transport and fate in ecosystems (p. 289). Oxford: Blackwell.

    Google Scholar 

  • Li, Q., Li, Y., Zhu, L., Xing, B., & Chen, B. (2017a). Dependence of plant uptake and diffusion of polycyclic aromatic hydrocarbons on the leaf surface morphology and micro-structures of Cuticular waxes. Scientific Reports, 7, 46235.

    CAS  Google Scholar 

  • Li, Y., Long, L., Ge, J., Yang, L. X., Cheng, J. J., et al. (2017b). Presence, distribution and risk assessment of polycyclic aromatic hydrocarbons in rice–wheat continuous cropping soils close to five industrial parks of Suzhou, China. Chemosphere, 184, 753–761.

    CAS  Google Scholar 

  • Li, H., & Ma, Y. (2016). Field study on the uptake, accumulation, translocation and risk assessment of PAHs in a soil–wheat system with amendments of sewage sludge. Science of the Total Environment, 560, 55–61.

    Google Scholar 

  • Li, J., Zheng, Y., Luo, X., Lin, Z., Zhang, W., et al. (2016). PAH contamination in Beijing’s topsoil: A unique indicator of the megacity’s evolving energy consumption and overall environmental quality. Scientific Reports, 6, 33245.

    CAS  Google Scholar 

  • Liao, C., Xu, W., Lu, G., Deng, F., Liang, X., et al. (2016). Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays L.). Ecological Engineering, 92, 10–17.

    Google Scholar 

  • Librando, V., Perrini, G., & Tomasello, M. (2002). Biomonitoring of atmospheric PAHs by evergreen plants: Correlations and applicability. Polycyclic Aromatic Compounds, 22(3–4), 549–559.

    CAS  Google Scholar 

  • Likar, M., Pongrac, P., Vogel-Mikuš, K., & Regvar, M. (2010). Molecular diversity and metal accumulation of different Thlaspi praecox populations from Slovenia. Plant and Soil, 330(1–2), 195–205.

    CAS  Google Scholar 

  • Lin, D., Zhu, L., He, W., & Tu, Y. (2006). Tea plant uptake and translocation of polycyclic aromatic hydrocarbons from water and around air. Journal of Agricultural and Food Chemistry, 54(10), 3658–3662.

    CAS  Google Scholar 

  • Liu, J., Duan, C., Zhang, X., Zhu, Y., & Lu, X. (2011). Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. Journal of Hazardous Materials, 188(1–3), 85–91.

    CAS  Google Scholar 

  • Liu, R., Jadeja, R. N., Zhou, Q., & Liu, Z. (2012). Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environmental Engineering Science, 29(6), 494–501.

    CAS  Google Scholar 

  • Liu, Y., Li, S., Ni, Z., Qu, M., Zhong, D., et al. (2016). Pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils. Science of the Total Environment, 542, 620–628.

    CAS  Google Scholar 

  • Liu, X., Peng, K., Wang, A., Lian, C., & Shen, Z. (2010). Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere, 78(9), 1136–1141.

    CAS  Google Scholar 

  • Liu, J., Shang, W., Zhang, X., Zhu, Y., & Yu, K. (2014). Mn accumulation and tolerance in Celosia argentea Linn.: A new Mn-hyperaccumulating plant species. Journal of Hazardous Materials, 267, 136–141.

    CAS  Google Scholar 

  • Liu, W., Shu, W. S., & Lan, C. Y. (2003). Viola baoshanensis: A new Cd hyperaccumulating plant species. Chinese Science Bulletin, 48, 2046–2049.

    Google Scholar 

  • Liu, S. H., Zeng, G. M., Niu, Q. Y., Liu, Y., Zhou, L., Jiang, L. H., et al. (2017). Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology, 224, 25–33.

    CAS  Google Scholar 

  • Lone, M. I., He, Z., Stoffella, P. J., & Yang, X. (2008). Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. Journal of Zhejiang University Science B, 9, 210–220.

    CAS  Google Scholar 

  • Lundstedt, S. (2003). Analysis of PAHs and their transformations products in contaminated soil and remedial processes. Doctoral dissertation, Kemi.

  • Luo, J., Zhang, H., Zhao, F. J., & Davison, W. (2010). Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants. Environmental Science and Technology, 44(17), 6636–6641.

    CAS  Google Scholar 

  • Lwin, C. S., Seo, B. H., Kim, H. U., Owens, G., & Kim, K. R. (2018). Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality a critical review. Soil Science and Plant Nutrition, 64, 156–167.

    CAS  Google Scholar 

  • Ma, X. K., ling Wu, L., & Fam, H. (2014). Heavy metal ions affecting the removal of polycyclic aromatic hydrocarbons by fungi with heavy-metal resistance. Applied Microbiology and Biotechnology, 98(23), 9817–9827.

    CAS  Google Scholar 

  • Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental Botany, 68, 1–13.

    CAS  Google Scholar 

  • Maier, A., Schumann, B. L., Chang, X., Talaska, G., & Puga, A. (2002). Arsenic co-exposure potentiates benzo [a] pyrene genotoxicity. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 517(1–2), 101–111.

    CAS  Google Scholar 

  • Malik, M., Chaney, R. L., Brewer, E. P., Li, Y. M., & Angle, J. S. (2000). Phytoextraction of soil cobalt using hyperaccumulator plants. International Journal of Phytoremediation, 2(4), 319–329.

    CAS  Google Scholar 

  • Mallick, S., Chakraborty, J., & Dutta, T. K. (2011). Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: A review. Critical Reviews in Microbiology, 37(1), 64–90.

    CAS  Google Scholar 

  • Mandzhieva, S. S., Minkina, T. M., Buratchevskaya, M. V., Chapligin, V. A., Tsitsuashvili, V. S., et al. (2016). Effect of natural and technogenic factors on the mobility and transformation of metal compounds in soil. Biogeosystem Technique, 10, 4.

    Google Scholar 

  • Manilal, V. B., & Alexander, M. (1991). Factors affecting the microbial degradation of phenanthrene in soil. Applied Microbiology and Biotechnology, 35(3), 401–405.

    CAS  Google Scholar 

  • Marschner, H. (2005). Mineral nutrition of higher plants (2nd ed.). Amsterdam: Academic Press.

    Google Scholar 

  • Martins, C. D., Liduino, V. S., Oliveira, F. J., & Sérvulo, E. F. C. (2014). Phytoremediation of soil multi-contaminated with hydrocarbons and heavy metals using sunflowers. International Journal of Engineering & Technology, 14(5), 1–6.

    Google Scholar 

  • McAlister, R. L., Kolterman, D. A., & Pollard, A. J. (2015). Nickel hyperaccumulation in populations of Psychotria grandis (Rubiaceae) from serpentine and non-serpentine soils of Puerto Rico. Australian Journal of Botany, 63(2), 85–91.

    CAS  Google Scholar 

  • Mesjasz-Przybylowicz, J., Przybylowicz, W., Barnabas, A., & Van Der Ent, A. (2016). Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo. New Phytologist, 209(4), 1513–1526.

    CAS  Google Scholar 

  • Migaszewski, Z. M., Gałuszka, A., Crock, J. G., Lamothe, P. J., & Dołęgowska, S. (2009). Interspecies and interregional comparisons of the chemistry of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) BSG and Pleurozium schreberi (Brid.) Mitt. from Poland and Alaska. Atmospheric Environment, 43(7), 1464–1473.

    CAS  Google Scholar 

  • Mills, R. F., Peaston, K. A., Runions, J., & Williams, L. E. (2012). HvHMA2, a P-1B-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS ONE, 7(8), e42640.

    CAS  Google Scholar 

  • Minkina, T., Mandzhieva, S., Motusova, G., Burachevskaya, M., Nazarenko, O., et al. (2014). Heavy metal compounds in a soil of technogenic zone as indicate of its ecological state. Eurasian Journal of Soil Science, 3(2), 144–151.

    Google Scholar 

  • Minkina, T., Rajput, V., Fedorenko, G., Fedorenko, A., Mandzhieva, S., et al. (2019a). Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00269-8.

    Article  Google Scholar 

  • Minkina, T., Sushkova, S., Yadav, B. K., Rajput, V., Mandzhieva, S., et al. (2019b). Accumulation and transformation of benzo[a]pyrene in Haplic Chernozem under artificial contamination. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00362-y.

    Article  Google Scholar 

  • Mistríková, I., & Vaverková, Š. (2007). Morphology and anatomy of Echinacea purpurea, E. angustifolia, E. pallida and Parthenium integrifolium. Biologia, 62(1), 2–5.

    Google Scholar 

  • Mizuno, T., Asahina, R., Hosono, A., Tanaka, A., Senoo, K., et al. (2008). Age-dependent manganese hyperaccumulation in Chengiopanax sciadophylloides (Araliaceae). Journal of Plant Nutrition, 31(10), 1811–1819.

    CAS  Google Scholar 

  • Moeckel, C., Thomas, G. O., Barber, J. L., & Jones, K. C. (2007). Uptake and storage of PCBs by plant cuticles. Environmental Science and Technology, 42(1), 100–105.

    Google Scholar 

  • Mongkhonsin, B., Nakbanpote, W., Nakai, I., Hokura, A., & Jearanaikoon, N. (2011). Distribution and speciation of chromium accumulated in Gynura pseudochina (L.) DC. Environmental and Experimental Botany, 74, 56–64.

    CAS  Google Scholar 

  • Moody, J. D., Freeman, J. P., Fu, P. P., & Cerniglia, C. E. (2004). Degradation of benzo [a] pyrene by Mycobacterium vanbaalenii PYR-1. Applied and Environmental Microbiology, 70(1), 340–345.

    CAS  Google Scholar 

  • Morel, M., Crouzet, J., Gravot, A., Auroy, P., Leonhardt, N., et al. (2009). AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiology, 149, 894–904.

    CAS  Google Scholar 

  • Morillo, E., Romero, A. S., Maqueda, C., Madrid, L., Ajmone-Marsan, F., et al. (2007). Soil pollution by PAHs in urban soils: A comparison of three European cities. Journal of Environmental Monitoring, 9(9), 1001–1008.

    CAS  Google Scholar 

  • Müller, K., Daus, B., Mattusch, J., Vetterlein, D., Merbach, I., et al. (2013). Impact of arsenic on uptake and bio-accumulation of antimony by arsenic hyperaccumulator Pteris vittata. Environmental Pollution, 174, 128–133.

    Google Scholar 

  • Nadarajah, N., Van Hamme, J., Pannu, J., Singh, A., & Ward, O. (2002). Enhanced transformation of polycyclic aromatic hydrocarbons using a combined Fenton’s reagent, microbial treatment and surfactants. Applied Microbiology and Biotechnology, 59(4–5), 540–544.

    CAS  Google Scholar 

  • Nikitha, T., Satyaprakash, M., Vani, S. S., Sadhana, B., & Padal, S. B. (2017). A review on polycyclic aromatic hydrocarbons: Their transport, fate and biodegradation in the environment. International Journal of Current Microbiology and Applied Sciences, 6(4), 1627–1639.

    CAS  Google Scholar 

  • Nisa, W., & Rashid, A. (2015). Potential of vetiver (Vetiveria Zizanioides L.) grass in removing selected PAHs from diesel contaminated soil. Pakistan Journal of Botany, 47(1), 291–296.

    CAS  Google Scholar 

  • Nouha, K., Kumar, R. S., & Tyagi, R. D. (2016). Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods. Bioresource Technology, 212, 120–129.

    CAS  Google Scholar 

  • Nworie, O. E., Qin, J., & Lin, C. (2019). Trace element uptake by herbaceous plants from the soils at a multiple trace element-contaminated site. Toxics. https://doi.org/10.3390/toxics7010003.

    Article  Google Scholar 

  • Oishi, Y. (2018). Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in central Japan. Environmental Pollution, 234, 330–338.

    CAS  Google Scholar 

  • Olaniran, A. O., Balgobind, A., & Pillay, B. (2013). Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. International Journal of Molecular Sciences, 14(5), 10197–10228.

    Google Scholar 

  • Oleszczuk, P., & Baran, S. (2005). Polycyclic aromatic hydrocarbons content in shoots and leaves of willow (Salix viminalis) cultivated on the sewage sludge-amended soil. Water, Air, and Soil Pollution, 168(1–4), 91–111.

    CAS  Google Scholar 

  • Onakpa, M. M., Njan, A. A., & Kalu, O. C. (2018). A review of heavy metal contamination of food crops in Nigeria. Annals of Global Health, 84, 488–494.

    Google Scholar 

  • Padmavathiamma, K. P., & Li, Y. L. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126.

    CAS  Google Scholar 

  • Parrish, Z. D., White, J. C., Isleyen, M., Gent, M. P., Iannucci-Berger, W., et al. (2006). Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere, 64(4), 609–618.

    CAS  Google Scholar 

  • Patowary, R., Patowary, K., Devi, A., Kalita, M. C., & Deka, S. (2017). Uptake of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) by Oryza sativa L. grown in soil contaminated with crude oil. Bulletin of Environmental Contamination and Toxicology, 98(1), 120–126.

    CAS  Google Scholar 

  • Peng, K., Luo, C., You, W., Lian, C., Li, X., et al. (2008). Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca americana L. Journal of Hazardous Materials, 154(1–3), 674–681.

    CAS  Google Scholar 

  • Petrová, Š., Rezek, J., Soudek, P., & Vaněk, T. (2017). Preliminary study of phytoremediation of brownfield soil contaminated by PAHs. Science of the Total Environment, 599, 572–580.

    Google Scholar 

  • Pi, N., Wu, Y., Zhu, H. W., Wong, Y. S., & Tam, N. F. Y. (2017). The uptake of mixed PAHs and PBDEs in wastewater by mangrove plants under different tidal flushing regimes. Environmental Pollution, 231, 104–114.

    CAS  Google Scholar 

  • Piccardo, M. T., Pala, M., Bonaccurso, B., Stella, A., Redaelli, A., et al. (2005). Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environmental Pollution, 133(2), 293–301.

    CAS  Google Scholar 

  • Pinto, E., Aguiar, A. A. R. M., & Ferreira, I. M. P. L. V. O. (2014). Influence of soil chemistry and plant physiology in the phytoremediation of Cu, Mn, and Zn. Critical Reviews in Plant Sciences, 33, 5. https://doi.org/10.1080/07352689.2014.885729.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V. (2007). Aquatic plants for phytotechnology. In S. N. Singh & R. D. Tripathi (Eds.), Environmental bioremediation technologies (pp. 259–274). Berlin: Springer.

    Google Scholar 

  • Prasad, M. N. V., & Katiyar, S. C. (2010). Drill cuttings and fluids of fossil fuel exploration in north-eastern India: Environmental concern and mitigation options. Current Science, 98(12), 1566–1569.

    Google Scholar 

  • Pretorius, T. R., Charest, C., Kimpe, L. E., & Blais, J. M. (2018). The accumulation of metals, PAHs and alkyl PAHs in the roots of Echinacea purpurea. PLoS ONE, 13(12), e0208325.

    Google Scholar 

  • Proctor, J., Van Balgooy, M. M. J., Fairweather, G. M., Nagy, L., & Reeves, R. D. (1994). A preliminary re-investigation of a plant geographical ‘El Dorado’. Tropical Biodiversity, 2(2), 303–336.

    Google Scholar 

  • Ptashnyk, M., Roose, T., Jones, D. L., & Kirk, G. J. D. (2011). Enhanced zinc uptake by rice through phytosiderophore secretion: A modelling study. Plant, Cell and Environment, 34, 2038–2046.

    CAS  Google Scholar 

  • Qian, H., & Jin, Y. (2016). An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9(2), 233–239.

    Google Scholar 

  • Qiu, R., Fang, X., Tang, Y., Du, S., Zeng, X., et al. (2006). Zinc hyperaccumulation and uptake by Potentilla griffithii Hook. International Journal of Phytoremediation, 8(4), 299–310.

    CAS  Google Scholar 

  • Qiu, R. L., Zhao, X., Tang, Y. T., Yu, F. M., & Hu, P. J. (2008). Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere, 74(1), 6–12.

    CAS  Google Scholar 

  • Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385.

    CAS  Google Scholar 

  • Rajakaruna, N., & Baker, A. J. (2004). Serpentine: A model habitat for botanical research in Sri Lanka. Ceylon Journal of Science, 32, 1–19.

    Google Scholar 

  • Rajakaruna, N., & Bohm, B. A. (2002). Serpentine and its vegetation: A preliminary study from Sri Lanka. Journal of Applied Botany, 76(1/2), 20–28.

    Google Scholar 

  • Rajput, V., Minkina, T., Ahmed, B., Sushkova, S., Singh, R., et al. (2019a). Interaction of copper based nanoparticles to soil, terrestrial and aquatic systems: Critical review of the state of the science and future perspectives. Reviews of Environmental Contamination and Toxicology. https://doi.org/10.1007/398_2019_34.

    Article  Google Scholar 

  • Rajput, V. D., Minkina, T., Fedorenko, A., Mandzhieva, S., Sushkova, S., et al. (2018a). Destructive effect of copper oxide nanoparticles on ultrastructure of chloroplast, plastoglobules and starch grains in spring barley (Hordeum sativum distichum). International Journal of Agriculture and Biology, 21, 171–174.

    Google Scholar 

  • Rajput, V., Minkina, T., Fedorenko, A., Sushkova, S., Mandzhieva, S., et al. (2018b). Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Science of the Total Environment, 645, 1103–1113.

    CAS  Google Scholar 

  • Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., et al. (2019b). ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00317-3.

    Article  Google Scholar 

  • Rascio, N. (1977). Metal accumulation bysome plants growing on zinc-mine deposits. Oikos, 29, 250–253.

    CAS  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181. https://doi.org/10.1016/j.plantsci.2010.08.016.

    Article  CAS  Google Scholar 

  • Ratola, N., Amigo, J. M., & Alves, A. (2010). Levels and sources of PAHs in selected sites from Portugal: Biomonitoring with Pinus pinea and Pinus pinaster needles. Archives of Environmental Contamination and Toxicology, 58(3), 631–647.

    CAS  Google Scholar 

  • Ratola, N., Amigo, J. M., Oliveira, M. S., Araújo, R., Silva, J. A., et al. (2011). Differences between Pinus pinea and Pinus pinaster as bioindicators of polycyclic aromatic hydrocarbons. Environmental and Experimental Botany, 72(2), 339–347.

    CAS  Google Scholar 

  • Raza, M., Zakaria, M. P., Hashim, N. R., Yim, U. H., Kannan, N., & Ha, S. Y. (2013). Composition and source identification of polycyclic aromatic hydrocarbons in mangrove sediments of Peninsular Malaysia: Indication of anthropogenic input. Environmental Earth Sciences, 70(6), 2425–2436.

    CAS  Google Scholar 

  • Reeves, R. D. (2003). Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil, 249, 57–65.

    CAS  Google Scholar 

  • Reeves, R. D. (2006). Hyperaccumulation of trace elements by plants. In J. L. Morel, G. Echevarria, & N. Goncharova (Eds.), Phytoremediation of metal-contaminated soils. NATO science series: IV: Earth and environmental sciences (pp. 1–25). NY: Springer.

    Google Scholar 

  • Reichenauer, T. G., & Germida, J. J. (2008). Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem: Chemistry and Sustainability Energy and Materials, 1(8–9), 708–717.

    CAS  Google Scholar 

  • Reimann, C., Englmaier, P., Fabian, K., Goug, L., Lamothe, P., et al. (2015). Biogeochemical plant–soil interaction: Variable element composition in leaves of four plant species collected along a south–north transect at the southern tip of Norway. Science of the Total Environment, 506–507, 480–495.

    Google Scholar 

  • Reinmann, C., Niskavaara, H., Kashulina, G., Filzmoser, P., Boyd, R., et al. (2001). Use of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) for monitoring of airborne pollution. Environmental Pollution, 113, 41–57.

    Google Scholar 

  • Rey-Salgueiro, L., Martínez-Carballo, E., García-Falcón, M. S., & Simal-Gándara, J. (2008). Effects of a chemical company fire on the occurrence of polycyclic aromatic hydrocarbons in plant foods. Food Chemistry, 108(1), 347–353.

    CAS  Google Scholar 

  • Rodriguez, J. H., Wannaz, E. D., Salazar, M. J., Pignata, M. L., Fangmeier, A., et al. (2012). Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmospheric Environment, 55, 35–42.

    CAS  Google Scholar 

  • Sabinin, D. A. (1955). Physiological basis of plant nutrition. Moscow: Academy of Sciences of USSR. (in Russian).

    Google Scholar 

  • Sahu, R. K., Naraian, R., & Chandra, V. (2007). Accumulation of metals in naturally grown weeds (aquatic macrophytes) grown on an industrial effluent channel. Clean: Soil, Air, Water, 35, 261–265.

    CAS  Google Scholar 

  • Šakalys, J., Kvietkus, K., Sucharova, J., Suchara, I., & Valiulis, D. (2009). Changes in total concentrations and assessed background concentrations of heavy metals in moss in Lithuania and the Czech Republic between 1995 and 2005. Chemosphere, 76, 91–97.

    Google Scholar 

  • Sanchez-Pardo, B., Fernandez-Pascual, M., & Zornoza, P. (2012). Copper microlocalisation, ultrastructural alterations and antioxidant responses in the nodules of white lupin and soybean plants grown under conditions of copper excess. Environmental and Experimental Botany, 84, 52–60.

    CAS  Google Scholar 

  • Sandermann, J. H. (1994). Higher plant metabolism of xenobiotics: The ‘green liver’ concept. Pharmacogenetics, 4(5), 225–241.

    CAS  Google Scholar 

  • Santiago-Cruz, M. A., Villagrán-Vargas, E., Velázquez-Rodríguez, A. S., Vernon-Carter, E. J., Cruz-Sosa, F., Orozco-Villafuerte, J., et al. (2014). Exploring the Cr(VI) phytoremediation potential of Cosmos bipinnatus. Water, Air, and Soil Pollution, 225(11), 225:2166.

    Google Scholar 

  • Sarma, H., Islam, N. F., Borgohain, P., Sarma, A., & Prasad, M. N. V. (2016). Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia’s oldest oil and gas drilling site in Assam, north-east India: Implications for the bio-economy. Emerging Contaminants, 2(3), 119–127.

    Google Scholar 

  • Schiavon, M., Pilon, M., Malagoli, M., & Pilon-Smits, E. A. (2015). Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation-a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Frontiers in Plant Science, 6(2), 1–13. https://doi.org/10.3389/fpls.2015.00002.

    Article  Google Scholar 

  • Schmidt, M. A., Gonzalez, J. M., Halvorson, J. J., & Hagerman, A. E. (2013). Metal mobilization in soil by two structurally defined polyphenols. Chemosphere, 90, 1870–1877.

    CAS  Google Scholar 

  • Schröder, P., & Collins, C. D. (2010). Organic xenobiotics and plants: From mode of action to ecophysiology (Vol. 8). Berlin: Springer.

    Google Scholar 

  • Semenkov, I. N., Kasimov, N. S., & Terskaya, E. V. (2016). Lateral distribution of metal forms in tundra, taiga and forest steppe catenae of the east European plain. Vestnik Moskovskogo Universiteta, Seriya Geografiya, 3, 87–95.

    Google Scholar 

  • Semenkov, I. N., Kasimov, N. S., & Terskaya, E. V. (2019). Lateral differentiation of metal fractions in loamy soil catenas of the central part of Western Siberia Plain. Vestnik Moskovskogo Universiteta, Seriya Geografiya, 3, 25–37.

    Google Scholar 

  • Semenkov, I. N., & Koroleva, T. V. (2019). International environmental legislation on the content of chemical elements in soils: Guidelines and schemes. Eurasian Soil Science, 52(10), 1259–1268. https://doi.org/10.1134/S1064229319100107.

    Article  Google Scholar 

  • Shanmugam, V., Lo, J. C., Wu, C. L., Wang, S. L., Lai, C. C., et al. (2011). Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana—The role in zinc tolerance. New Phytologist, 190, 125–137.

    CAS  Google Scholar 

  • Shcheglov, A. I., Tsvetnova, O. B., & Klyashtorin, A. L. (2001). Biogeochemical migration of technogenic radionuclides in forest ecosistemsю nauka moskva. ISBN: 5-02-022568-1.

  • Shen, H., Huang, Y., Wang, R., Zhu, D., Li, W., et al. (2013). Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environmental Science and Technology, 47, 6415–6424.

    Google Scholar 

  • Shen, G., Lu, Y., & Hong, J. (2006). Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil. Ecotoxicology and Environmental Safety, 63(3), 474–480.

    CAS  Google Scholar 

  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2016). Factors affecting phytoextraction: A review. Pedosphere, 26(2), 148–166. https://doi.org/10.1016/S1002-0160(15)60032-7.

    Article  CAS  Google Scholar 

  • Sims, R. C., & Overcash, M. R. (1983). Fate of polynuclear aromatic compounds (PNAs) in soil–plant systems. In F. A. Gunther (Ed.), Residue reviews (pp. 1–68). New York, NY: Springer.

    Google Scholar 

  • Singh, A., & Fulekar, M. H. (2012). Phytoremediation of heavy metals by Brassica juncea in aquatic and terrestrial environment. In N. Anjum, I. Ahmad, M. Pereira, A. Duarte, S. Umar, & N. Khan (Eds.), The plant family Brassicaceae (pp. 153–169). Dordrecht: Springer.

    Google Scholar 

  • Singh, O. V., & Jain, R. K. (2003). Phytoremediation of toxic aromatic pollutants from soil. Applied Microbiology and Biotechnology, 63(2), 128–135.

    CAS  Google Scholar 

  • Singh, N. K., & Singh, R. P. (2015). Potential of plants and microbes for the removal of metals: Eco-friendly approach for remediation of soil and water. In P. Ahmad (Ed.), Plant metal interaction: Emerging remediation techniques. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-803158-2.00019-9.

    Chapter  Google Scholar 

  • Singh, R., Ahirwar, N. K., Tiwari, J., & Pathak, J. (2018). Review on sources and effect of heavy metal in soil: its bioremediation. IMPACT: International Journal of Research in Applied, Natural and Social Sciences, 6(1), 1–22.

    Google Scholar 

  • Skert, N., Falomo, J., Giorgini, L., Acquavita, A., Capriglia, L., et al. (2010). Biological and artificial matrixes as PAH accumulators: An experimental comparative study. Water, Air, and Soil Pollution, 206(1–4), 95–103.

    CAS  Google Scholar 

  • Sooksawat, N., Meetam, M., Kruatrachue, M., Pokethitiyook, P., & Nathalang, K. (2013). Phytoremediation potential of charophytes: Bioaccumulation and toxicity studies of cadmium, lead and zinc. Journal of Environmental Sciences, 25(3), 596–604.

    CAS  Google Scholar 

  • Sukhdhane, K. S., Pandey, P. K., Vennila, A., Purushothaman, C. S., & Ajima, M. N. O. (2015). Sources, distribution and risk assessment of polycyclic aromatic hydrocarbons in the mangrove sediments of Thane Creek, Maharashtra, India. Environmental Monitoring and Assessment, 187(5), 274.

    CAS  Google Scholar 

  • Sun, L., Liao, X., Yan, X., Zhu, G., & Ma, D. (2014). Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants from typical industrial sites: Potential candidate in phytoremediation for co-contamination. Environmental Science and Pollution Research, 21(21), 12494–12504.

    CAS  Google Scholar 

  • Sun, J. T., Pan, L. L., Tsang, D. C., Zhan, Y., Zhu, L. Z., et al. (2018). Organic contamination and remediation in the agricultural soils of China: A critical review. Science of the Total Environment, 615, 724–740.

    CAS  Google Scholar 

  • Sushkova, S. N., Minkina, T., Deryabkina, I., Mandzhieva, S., Zamulina, I., et al. (2017). Influence of PAH contamination on soil ecological status. Journal of Soils and Sediments, 18, 2368–2378.

    Google Scholar 

  • Sushkova, S., Minkina, T., Deryabkina, I., Rajput, V., Antonenko, E., et al. (2019). Environmental pollution of soil with PAHs in energy producing plants zone. Science of the Total Environment, 655, 232–241.

    CAS  Google Scholar 

  • Sutherland, J. B., Freeman, J. P., Selby, A. L., Fu, P. P., Miller, D. W., & Cerniglia, C. E. (1990). Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Archives of Microbiology, 154(3), 260–266.

    CAS  Google Scholar 

  • Suzuki, M., Tsukamoto, T., Inoue, H., Watanabe, S., Matsuhashi, S., et al. (2008). Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Molecular Biology, 66, 609–617.

    CAS  Google Scholar 

  • Szczygłowska, M., Piekarska, A., Konieczka, P., & Namieśnik, J. (2011). Use of brassica plants in the phytoremediation and biofumigation processes. International Journal of Molecular Sciences, 12(11), 7760–7771.

    Google Scholar 

  • Takahashi, R., Ishimaru, Y., Shimo, H., Ogo, Y., Senoura, T., et al. (2012). The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell and Environment, 35, 1948–1957.

    CAS  Google Scholar 

  • Tao, S., Cui, Y. H., Xu, F. L., Li, B. G., Cao, J., et al. (2004). Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Science of the Total Environment, 320(1), 11–24.

    CAS  Google Scholar 

  • Tappero, R., Peltier, E., Gräfe, M., Heidel, K., Ginder-Vogel, M., et al. (2007). Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytologist, 175(4), 641–654.

    CAS  Google Scholar 

  • Thavamani, P., Megharaj, M., Krishnamurti, G. S. R., McFarland, R., & Naidu, R. (2011). Finger printing of mixed contaminants from former manufactured gas plant (MGP) site soils: Implications to bioremediation. Environment International, 37(1), 184–189.

    CAS  Google Scholar 

  • Theodoulou, F. L. (2000). Plant ABC transporters. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1465(1–2), 79–103.

    CAS  Google Scholar 

  • Thorsen, W. A., Cope, W. G., & Shea, D. (2004). Bioavailability of PAHs: Effects of soot carbon and PAH source. Environmental Science and Technology, 38(7), 2029–2037.

    CAS  Google Scholar 

  • Tian, L., Yin, S., Ma, Y., Kang, H., Zhang, X., et al. (2019). Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves: Morphological characteristics have the greatest impact. Science of the Total Environment, 652, 1149–1155.

    Google Scholar 

  • Tolosa, I., Bayona, J. M., & Albaigés, J. (1996). Aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in northwestern Mediterranean sediments: Spatial and temporal variability, fluxes, and budgets. Environmental Science and Technology, 30(8), 2495–2503.

    CAS  Google Scholar 

  • Tortella, G. R., Diez, M. C., & Durán, N. (2005). Fungal diversity and use in decomposition of environmental pollutants. Critical Reviews in Microbiology, 31(4), 197–212.

    CAS  Google Scholar 

  • Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309.

    Google Scholar 

  • Toyama, T., Furukawa, T., Maeda, N., Inoue, D., Sei, K., et al. (2011). Accelerated biodegradation of pyrene and benzo [a] pyrene in the Phragmites australis rhizosphere by bacteria–root exudate interactions. Water Research, 45(4), 1629–1638.

    CAS  Google Scholar 

  • Uraguchi, S., Kiyono, M., Sakamoto, T., Watanabe, I., & Kuno, K. (2009). Contributions of apoplasmic cadmium accumulation, antioxidative enzymes and induction of phytochelatins in cadmium tolerance of the cadmiumaccumulating cultivar of black oat (Avena strigosa Schreb.). Planta, 230, 267–276.

    CAS  Google Scholar 

  • van der Ent, A., Erskine, P., & Sumail, S. (2015). Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology, 25(5), 243–259.

    Google Scholar 

  • van der Ent, A., Ocenar, A., Tisserand, R., Sugau, J. B., Echevarria, G., & Erskine, P. D. (2019). Herbarium X-ray fluorescence screening for nickel, cobalt and manganese hyperaccumulator plants in the flora of Sabah (Malaysia, Borneo Island). Journal of Geochemical Exploration, 202, 49–58.

    Google Scholar 

  • Vane, C. H., Harrison, I., Kim, A., Moss-Hayes, V., Vickers, B., et al. (2009). Organic and metal contamination in surface mangrove sediments of South China. Marine Pollution Bulletin, 58(1), 134–144.

    CAS  Google Scholar 

  • Vane, C. H., Kim, A. W., Beriro, D. J., Cave, M. R., Knights, K., et al. (2014). Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry, 51, 303–314.

    CAS  Google Scholar 

  • Vogel-Mikuš, K., Drobne, D., & Regvar, M. (2005). Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 133(2), 233–242.

    Google Scholar 

  • Wang, P., Hu, X., He, Q., Waigi, M., Wang, J., & Ling, W. (2018). Using calcination remediation to stabilize heavy metals and simultaneously remove polycyclic aromatic hydrocarbons in soil. International Journal of Environmental Research and Public Health, 15(8), 1731.

    Google Scholar 

  • Wang, S. L., Liao, W. B., Yu, F. Q., Liao, B., & Shu, W. S. (2009). Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China. Environmental Geology, 58, 471–476.

    CAS  Google Scholar 

  • Wang, X. T., Chen, L., Wang, X. K., Lei, B. L., Sun, Y. F., et al. (2015). Occurrence, sources and health risk assessment of polycyclic aromatic hydrocarbons in urban (Pudong) and suburban soils from Shanghai in China. Chemosphere, 119, 1224–1232.

    CAS  Google Scholar 

  • Wang, Y. Q., Tao, S., Jiao, X. C., Coveney, R. M., Wu, S. P., et al. (2008). Polycyclic aromatic hydrocarbons in leaf cuticles and inner tissues of six species of trees in urban Beijing. Environmental Pollution, 151, 158–164.

    CAS  Google Scholar 

  • Wang, Y., Tian, Z., Zhu, H., Cheng, Z., Kang, M., et al. (2012). Polycyclic aromatic hydrocarbons (PAHs) in soils and vegetation near an e-waste recycling site in South China: Concentration, distribution, source, and risk assessment. Science of the Total Environment, 439, 187–193.

    CAS  Google Scholar 

  • Watts, A. W., Ballestero, T. P., & Gardner, K. H. (2006). Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere, 62(8), 1253–1260.

    Google Scholar 

  • Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33(1), 475–505.

    Google Scholar 

  • Wei, C., Bandowe, B. A. M., Han, Y., Cao, J., Zhan, C., & Wilcke, W. (2015). Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere, 134, 512–520.

    CAS  Google Scholar 

  • Wei, C., Wang, C., & Yang, L. (2008). Characterizing spatial distribution and sources of heavy metals in the soils from mining–smelting activities in Shuikoushan Hunan Province, China. Journal of Environmental Sciences, 21, 1230–1236.

    Google Scholar 

  • Wilcke, W. (2000). Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—A review. Journal of Plant Nutrition and Soil Science, 163(3), 229–248.

    CAS  Google Scholar 

  • Wild, S. R., Berrow, M. L., & Jones, K. C. (1991). The persistence of polynuclear aromatic hydrocarbons (PAHs) in sewage sludge amended agricultural soils. Environmental Pollution, 72(2), 141–157.

    CAS  Google Scholar 

  • Wild, S. R., Berrow, M. L., McGrath, S. P., & Jones, K. C. (1992). Polynuclear aromatic hydrocarbons in crops from long-term field experiments amended with sewage sludge. Environmental Pollution, 76(1), 25–32.

    CAS  Google Scholar 

  • Wild, S. R., & Jones, K. C. (1992). Polynuclear aromatic hydrocarbon uptake by carrots grown in sludge-amended soil. Journal of Environmental Quality, 21(2), 217–225.

    CAS  Google Scholar 

  • Wild, S. R., & Jones, K. C. (1993). Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge. Environmental Toxicology and Chemistry: An International Journal, 12(1), 5–12.

    CAS  Google Scholar 

  • Wong, C. K. E., & Cobbett, C. S. (2009). HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytologist, 181, 71–78.

    CAS  Google Scholar 

  • Wu, X., Ernst, F., Conkle, J. L., & Gan, J. (2013). Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environment International, 60, 15–22.

    CAS  Google Scholar 

  • Wu, Q., Wang, X., & Zhou, Q. (2014). Biomonitoring persistent organic pollutants in the atmosphere with mosses: Performance and application. Environment International, 66, 28–37.

    CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 1–20.

  • Xu, W. F., Shi, W. M., Yan, F., Zhang, B. A., & Liang, J. S. (2011). Mechanisms of cadmium detoxification in cattail (Typha angustifolia L.). Aquatic Botany, 94, 37–43.

    CAS  Google Scholar 

  • Yakovleva, E. V., Gabov, D. N., Beznosikov, V. A., & Kondratenok, B. M. (2016). Accumulation of polycyclic aromatic hydrocarbons in soils and plants of the tundra zone under the impact of coal-mining industry. Eurasian Soil Science, 49(11), 1319–1328.

    CAS  Google Scholar 

  • Yakovleva, E. V., Gabov, D. N., Beznosikov, V. A., Kondratenok, B. M., & Dubrovskiy, Y. A. (2017). Accumulation of PAHs in tundra plants and soils under the influence of coal mining. Polycyclic Aromatic Compounds, 37(2–3), 203–218.

    CAS  Google Scholar 

  • Yang, X. E., Long, X. X., Ye, H. B., He, Z. L., Calvert, D. V., et al. (2004). Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil, 259(1–2), 181–189.

    CAS  Google Scholar 

  • Yu, X. Z., & Gu, J. D. (2007). Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz × alba L.) metabolism. Archives of Environmental Contamination and Toxicology, 52(4), 503–511.

    CAS  Google Scholar 

  • Yu, X. Z., Gu, J. D., & Xing, L. Q. (2008). Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows. Ecotoxicology, 17(8), 747–755.

    CAS  Google Scholar 

  • Zhang, X. H., Liu, J., Huang, H. T., Chen, J., Zhu, Y. N., & Wang, D. Q. (2007). Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere, 67(6), 1138–1143.

    CAS  Google Scholar 

  • Zhang, L., & Wong, M. H. (2007). Environmental mercury contamination in China: Sources and impacts. Environment International, 33, 108–121.

    CAS  Google Scholar 

  • Zhao, H., Guan, Y., Zhang, G., Zhang, Z., Tan, F., et al. (2013). Uptake of perfluorooctane sulfonate (PFOS) by wheat (Triticum aestivum L.) plant. Chemosphere, 91(2), 139–144.

    CAS  Google Scholar 

  • Zheng, L., Yamaji, N., Yokosho, K., & Ma, J. F. (2012). YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice. The Plant Cell, 24, 3767–3782.

    CAS  Google Scholar 

  • Zhu, Y., Xu, F., Liu, Q., Chen, M., Liu, X., et al. (2019). Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Science of the Total Environment, 662, 414–421.

    CAS  Google Scholar 

  • Zohair, A., Salim, A. B., Soyibo, A. A., & Beck, A. J. (2006). Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables. Chemosphere, 63(4), 541–553.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by RFBR (Project No 19-29-05265: analysis of potential of hyperaccumulators as bioindicators and bioremediators), RSF (Project No 17-77-20072: phylogenetic analysis), Grant of the President of Russian Federation (No. MK-2973.2019.4: review of hyperaccumulators of PAHs), and Leading Scientific Schools (No. NSh-2511.2020.11: review of hyperaccumulators of HMs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Rajput.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 70 kb)

Supplementary material 2 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, V., Minkina, T., Semenkov, I. et al. Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environ Geochem Health 43, 1629–1654 (2021). https://doi.org/10.1007/s10653-020-00527-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00527-0

Keywords

Navigation