Skip to main content

Advertisement

Log in

Radiation-induced circulating miRNA expression in blood of head and neck cancer patients

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

In recent years, scientists have found evidence confirming the aberrant expression of miRNAs in cancer patients compared to healthy individuals. The growing interest in the identification of non-invasive and specific diagnostic and prognostic molecular markers has identified microRNAs as potential candidates in cancer diagnosis, prognosis and treatment response. In the present study, we have analyzed the expression profile of circulating miR-21, -191 and -421 in peripheral blood of head and neck cancer patients (HNC) to investigate a possible modulation of mRNA levels by radiation and to identify the role of mRNA as biomarkers of cancer prognosis. Results showed a modulation of the microRNA expression at different time points after radiotherapy, suggesting that treatment may influence the release of circulating miRNAs depending also on the time interval elapsed since radiotherapy. The expression levels of miR-21, -191 and -421 were higher in blood of patients treated with radiotherapy alone after 6 months from the end of therapy and high levels of them seemed to correlate with the remission of the disease. The trends shown in this study confirmed that miRNAs could be useful prognosis markers and could provide preliminary data for further evaluation in predicting patients’ response to radiotherapy by developing miRNA-based treatments to improve the sensitivity of cancer cells to radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bi CL, Chng WJ (2011) MiRNA deregulation in multiple myeloma. Chin Med J (Engl) 124:3164–3169

    Google Scholar 

  • Cellini F, Morganti AG, Genovesi D, Silvestris N, Valentini V (2014) Role of microRNA in response to ionizing radiations: evidences and potential impact on clinical practice for radiotherapy. Molecules 19(4):5379–5401

    Article  Google Scholar 

  • Chen L, Wen Y, Zhang J, Sun W, Lui VWY, Wei Y, Chen F, Wen W (2018) Prediction of radiotherapy response with a 5-microRNA signature-based nomogram in head and neck squamous cell carcinoma. Cancer Med 7(3):726–735. https://doi.org/10.1002/cam4.1369

    Article  Google Scholar 

  • Courthod G, Franco P, Palermo L, Pisconti S, Numico G (2014) The role of microRNA in head and neck cancer: current knowledge and perspectives. Molecules 19(5):5704–5716. https://doi.org/10.3390/molecules19055704

    Article  Google Scholar 

  • Farooqi AA, Qureshi MZ, Coskunpinar E, Naqvi SK, Yaylim I, Ismail M (2014) MiR-421, miR-155 and miR-650: emerging trends of regulation of cancer and apoptosis. Asian Pac J Cancer Prev 15(5):1909–1912

    Article  Google Scholar 

  • Gombos K, Horváth R, Szele E, Juhász K, Gőcze K, Somlai K, Pajkos G, And Ember I, Olasz L (2013) MiRNA expression profiles of oral squamous cell carcinomas. Anticancer Res 33:1511–1518

    Google Scholar 

  • Hailiang H, Liutao D, Gindy N, Robert CS, Richard AG (2010) ATM is down-regulated by N-Myc–regulated microRNA-421. Proc Natl Acad Sci USA 107(4):1506–1511

    Article  ADS  Google Scholar 

  • Halimi M, Asghari SM, Sariri R, Moslemi D, Parsian H (2012) Cellular response to ionizing radiation: a MicroRNA story. Int J Mol Cell Med 1(4):178–184

    Google Scholar 

  • Han HS, Jo YN, Lee JY, Choi SY, Jeong Y, Yun J, Lee OJ (2014) Identification of suitable reference genes for the relative quantification of microRNAs in pleural effusion. Oncol Lett 8(4):1889–1895. https://doi.org/10.3892/ol.2014.2404

    Article  Google Scholar 

  • Hu H, Du L, Nagabayashi G, Seeger RC, Gatti RA (2010) ATM is down-regulated by N-Myc-regulated microRNA-421. Proc Natl Acad Sci USA 107:1506–1511. https://doi.org/10.1073/pnas.0907763107

    Article  ADS  Google Scholar 

  • Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101(10):2087–2092. https://doi.org/10.1111/j.1349-7006.2010.01650.x

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  Google Scholar 

  • Lubov J, Maschietto M, Ibrahim I, Mlynarek A, Hier M, Kowalski LP, Alaoui-Jamali MA, da Silva SD (2017) Meta-analysis of microRNAs expression in head and neck cancer: uncovering association with outcome and mechanisms. Oncotarget 8(33):55511–55524. https://doi.org/10.18632/oncotarget.19224

    Article  Google Scholar 

  • Mansour WY, Bogdanova NV, Kasten-Pisula U, Rieckmann T, Köcher S, Borgmann K, Baumann M, Krause M, Petersen C, Hu H, Gatti RA, Dikomey E, Dörk T, Dahm-Daphi J (2013) Aberrant overexpression of miR-421 downregulates ATM and leads to a pronounced DSB repair defect and clinical hypersensitivity in SKX squamous cell carcinoma. Radiother Oncol 106(1):147–154. https://doi.org/10.1016/j.radonc.2012.10.020

    Article  Google Scholar 

  • Metheetrairut C, Slack FJ (2013) MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev 23(1):12–19. https://doi.org/10.1016/j.gde.2013.01.002

    Article  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518. https://doi.org/10.1073/pnas.0804549105

    Article  ADS  Google Scholar 

  • Nagpal N, Ahmad HM, Molparia B, Kulshreshtha R (2013) MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis 34:1889–1899. https://doi.org/10.1093/carcin/bgt107

    Article  Google Scholar 

  • Noren Hooten N, Fitzpatrick M, Wood WH 3rd, De S, Ejiogu N, Zhang Y, Mattison JA, Becker KG, Zonderman AB, Evans MK (2013) Age-related changes in microRNA levels in serum. Aging 5(10):725–740

    Article  Google Scholar 

  • Paolini A, Curti V, Pasi F, Mazzini G, Nano R, Capelli E (2015) Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs. Int J Oncol 46(4):1491–1497. https://doi.org/10.3892/ijo.2015.2864

    Article  Google Scholar 

  • Patnaik SK, Kannisto E, Yendamuri S (2010) Overexpression of microRNA miR-30a or miR-191 in A549 lung cancer or BEAS-2B normal lung cell lines does not alter phenotype. PLoS ONE 5:e9219. https://doi.org/10.1371/journal.pone.0009219

    Article  ADS  Google Scholar 

  • Reddy K (2015) MicroRNA (miRNA) in cancer. Cancer Cell Int 15:38. https://doi.org/10.1186/s12935-015-0185-1

    Article  ADS  Google Scholar 

  • Rusanova I, Diaz-Casado ME, Fernández-Ortiz M, Aranda-Martínez P, Guerra-Librero A, García-García FJ, Escames G, Mañas L, Acuña-Castroviejo D (2018) Analysis of plasma MicroRNAs as predictors and biomarkers of aging and frailty in humans. Oxid Med Cell Longev 2018:7671850. https://doi.org/10.1155/2018/7671850

    Article  Google Scholar 

  • Smith-Vikos T, Slack FJ (2012) MicroRNAs and their roles in aging. J Cell Sci 125(Pt 1):7–17. https://doi.org/10.1242/jcs.099200

    Article  Google Scholar 

  • Sundarbose K, Kartha RV, Subramanian S (2013) MicroRNAs as biomarkers in cancer. Diagnostics (Basel) 3(1):84–104. https://doi.org/10.3390/diagnostics3010084

    Article  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261

    Article  ADS  Google Scholar 

  • Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJJ, Lazo JS, Wang Z, Zhang L, Yu J (2009) MicroRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 69:8157–8165. https://doi.org/10.1158/00085472.CAN-09-1996

    Article  Google Scholar 

  • Wu DG, Wang YY, Fan LG, Luo H, Han B, Sun LH, Wang XF, Zhang JX, Cao L, Wang XR, You YP, Liu N (2011) MicroRNA-7 regulates glioblastoma cell invasion via targeting focal adhesion kinase expression. Chin Med J (Engl) 124:2616–2621

    Google Scholar 

  • Wu YR, Qi HJ, Deng DF, Luo YY, Yang SL (2016) MicroRNA-21 promotes cell proliferation, migration, and resistance to apoptosis through PTEN/PI3K/AKT signaling pathway in esophageal cancer. Tumour Biol 37(9):12061–12070

    Article  Google Scholar 

  • Zhang X, Ng WL, Wang P, Tian L, Werner E, Wang H, Doetsch P, Wang Y (2012) MicroRNA-21 modulates the levels of reactive oxygen species levels by targeting SOD3 and TNF. Cancer Res 72(18):4707–4713. https://doi.org/10.1158/0008-5472.CAN-12-0639

    Article  Google Scholar 

  • Zhao L, Lu X, Cao Y (2013) MicroRNA and signal transduction pathways in tumor radiation response. Cell Signal 25(7):1625–1634. https://doi.org/10.1016/j.cellsig.2013.04.004

    Article  Google Scholar 

  • Zhao J, Qiao CR, Ding Z, Sheng YL, Li XN, Yang Y, Zhu DY, Zhang CY, Liu DL, Wu K, Zhao S (2017) A novel pathway in NSCLC cells: miR-191, targeting NFIA, is induced by chronic hypoxia, and promotes cell proliferation and migration. Mol Med Rep 15(3):1319–1325

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Staff of Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia for their support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Pasi.

Ethics declarations

Conflicting interests

Authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasi, F., Corbella, F., Baio, A. et al. Radiation-induced circulating miRNA expression in blood of head and neck cancer patients. Radiat Environ Biophys 59, 237–244 (2020). https://doi.org/10.1007/s00411-020-00832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-020-00832-3

Keywords

Navigation