Skip to main content
Log in

Implications of agar and agarase in industrial applications of sustainable marine biomass

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Agar, a major component of the cell wall of red algae, is an interesting heteropolysaccharide containing an unusual sugar, 3,6-anhydro-l-galactose. It is widely used as a valuable material in various industrial and experimental applications due to its characteristic gelling and stabilizing properties. Agar-derived oligosaccharides or mono-sugars produced by various agarases have become a promising subject for research owing to their unique biological activities, including anti-obesity, anti-diabetic, immunomodulatory, anti-tumor, antioxidant, skin-whitening, skin-moisturizing, anti-fatigue, and anti-cariogenic activities. Agar is also considered as an alternative sustainable source of biomass for chemical feedstock and biofuel production to substitute for the fossil resource. In this review, we summarize various biochemically characterized agarases, which are useful for industrial applications, such as neoagarooligosaccharide or agarooligosaccharide production and saccharification of agar. Additionally, we succinctly discuss various recent studies that have been conducted to investigate the versatile biological activities of agar-derived saccharides and biofuel production from agar biomass. This review provides a basic framework for understanding the importance of agarases and agar-derived saccharides with broad applications in pharmaceutical, cosmetic, food, and bioenergy industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acharya NV, Wilton LV, Shakir SA (2006) Safety profile of orlistat: results of a prescription-event monitoring study. Int J Obes 30(11):1645–1652

    CAS  Google Scholar 

  • An K, Shi X, Cui F, Cheng J, Liu N, Zhao X, Zhang XH (2018) Characterization and overexpression of a glycosyl hydrolase family 16 β-agarase YM01-1 from marine bacterium Catenovulum agarivorans YM01T. Protein Expr Purif 143:1–8

    PubMed  CAS  Google Scholar 

  • Araki C (1959) Seaweed polysaccharides. In: Wolfrom ML (ed) Carbohydrate chemistry of substances of biological interests. Pergamon Press, London, pp 15–30

    Google Scholar 

  • Asghar S, Lee CR, Park JS, Chi WJ, Kang DK, Hong SK (2018) Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-L-galactosidase, Ahg786, from Gayadomonas joobiniege G7. Appl Microbiol Biotechnol 102(20):8855–8866

    PubMed  CAS  Google Scholar 

  • Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press

  • Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71(11):6465–6472

    PubMed  PubMed Central  CAS  Google Scholar 

  • Burguera B, Ali KF, Brito JP (2017) Antiobesity drugs in the management of type 2 diabetes: a shift in thinking? Cleve Clin J Med 84(7 Suppl 1):S39–S46

    PubMed  Google Scholar 

  • Chen XL, Hou YP, Jin M, Zeng RY, Lin HT (2016) Expression and characterization of a novel thermostable and pH-stable β-agarase from deep-sea bacterium Flammeovirga sp. OC4. J Agric Food Chem 64(38):7251–7258

    PubMed  CAS  Google Scholar 

  • Chen ZW, Lin HJ, Huang WC, Hsuan SL, Lin JH, Wang JP (2018) Molecular cloning, expression, and functional characterization of the β-agarase AgaB-4 from Paenibacillus agarexedens. AMB Express 8(1):49

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Lin H, Jin M, Zeng R, Lin M (2019a) Characterization of a novel alkaline β-agarase and its hydrolysates of agar. Food Chem 295:311–319

    PubMed  CAS  Google Scholar 

  • Chen X, Yu J, Xue C, Wang Y, Tang Q, Mao X (2019b) Mechanism of neoagarotetraose protects against intense exercise-induced liver injury based on molecular ecological network analysis. Biosci Biotechnol Biochem 83(7):1227–1238

    PubMed  CAS  Google Scholar 

  • Chen YP, Wu HT, Wang GH, Wu DY, Hwang IE, Chien MC, Pang HY, Kuo JT, Liaw LL (2019c) Inspecting the genome sequence and agarases of Microbulbifer pacificus LD25 from a saltwater hot spring. J Biosci Bioeng 127(4):403–410

    PubMed  CAS  Google Scholar 

  • Chi WJ, Chang YK, Hong SK (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol 94(4):917–930

    PubMed  CAS  Google Scholar 

  • Choi U, Jung S, Hong SK, Lee CR (2019) Characterization of a novel neoagarobiose-producing GH42 β-agarase, AgaJ10, from Gayadomonas joobiniege G7. Appl Biochem Biotechnol 189(1):1–12

    PubMed  CAS  Google Scholar 

  • Cui F, Dong S, Shi X, Zhao X, Zhang XH (2014) Overexpression and characterization of a novel thermostable β-agarase YM01-3, from marine bacterium Catenovulum agarivorans YM01T. Mar Drugs 12(5):2731–2747

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cui X, Jiang Y, Chang L, Meng L, Yu J, Wang C, Jiang X (2018) Heterologous expression of an agarase gene in Bacillus subtilis, and characterization of the agarase. Int J Biol Macromol 120(Pt A):657–664

    PubMed  CAS  Google Scholar 

  • Day DF, Yaphe W (1975) Enzymatic hydrolysis of agar: purification and characterization of neoagarobiose hydrolase and p-nitrophenyl alpha-galactoside hydrolase. Can J Microbiol 21(10):1512–1518

    PubMed  CAS  Google Scholar 

  • Di W, Qu W, Zeng R (2018) Cloning, expression, and characterization of thermal-stable and pH-stable agarase from mangrove sediments. J Basic Microbiol 58(4):302–309

    PubMed  CAS  Google Scholar 

  • Dong J, Hashikawa S, Konishi T, Tamaru Y, Araki T (2006) Cloning of the novel gene encoding β-agarase C from a marine bacterium, Vibrio sp. strain PO-303, and characterization of the gene product. Appl Environ Microbiol 72(9):6399–6401

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dong Q, Ruan L, Shi H (2016) A β-agarase with high pH stability from Flammeovirga sp. SJP92. Carbohydr Res 432:1–8

    PubMed  CAS  Google Scholar 

  • Duckworth M, Yaphe W (1972) The relationship between structures and biological properties of agars. In: Nisizawa K (ed) Proceedings of the 7th international seaweed symposium. Halstead Press, New York, pp 15–22

    Google Scholar 

  • Ekborg NA, Taylor LE, Longmire AG, Henrissat B, Weiner RM, Hutcheson SW (2006) Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Appl Environ Microbiol 72(5):3396–3405

    PubMed  PubMed Central  CAS  Google Scholar 

  • Elkahlout K, Alipour S, Eroglu I, Gunduz U, Yucel M (2017) Long-term biological hydrogen production by agar immobilized Rhodobacter capsulatus in a sequential batch photobioreactor. Bioprocess Biosyst Eng 40(4):589–599

    PubMed  CAS  Google Scholar 

  • Enoki T, Okuda S, Kudo Y, Takashima F, Sagawa H, Kato I (2010) Oligosaccharides from agar inhibit pro-inflammatory mediator release by inducing heme oxygenase 1. Biosci Biotechnol Biochem 74(4):766–770

    PubMed  CAS  Google Scholar 

  • Enoki T, Tominaga T, Takashima F, Ohnogi H, Sagawa H, Kato I (2012) Anti-tumor-promoting activities of agaro-oligosaccharides on two-stage mouse skin carcinogenesis. Biol Pharm Bull 35(7):1145–1149

    PubMed  CAS  Google Scholar 

  • Frey PA (1996) The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 10(4):461–470

    PubMed  CAS  Google Scholar 

  • Fu XT, Lin H, Kim SM (2008) Purification and characterization of a novel β-agarase, AgaA34, from Agarivorans albus YKW-34. Appl Microbiol Biotechnol 78(2):265–273

    PubMed  CAS  Google Scholar 

  • Fu XT, Pan CH, Lin H, Kim SM (2009) Gene cloning, expression, and characterization of a β-agarase, AgaB34, from Agarivorans albus YKW-34. J Microbiol Biotechnol 19(3):257–264

    PubMed  CAS  Google Scholar 

  • Ghadge AA, Khaire AA, Kuvalekar AA (2018) Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev 39:151–158

    PubMed  CAS  Google Scholar 

  • Guerrero C, Vera C, Serna N, Illanes A (2017) Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. Bioresour Technol 232:53–63

    PubMed  CAS  Google Scholar 

  • Hafizah NF, Teh AH, Furusawa G (2019) Biochemical characterization of thermostable and detergent-tolerant β-agarase, PdAgaC, from Persicobacter sp. CCB-QB2. Appl Biochem Biotechnol 187(3):770–781

    PubMed  CAS  Google Scholar 

  • Han Z, Zhang Y, Yang J (2019) Biochemical characterization of a new β-agarase from Cellulophaga algicola. Int J Mol Sci 20(9):2143

    PubMed Central  CAS  Google Scholar 

  • Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464(7290):908–912

    PubMed  CAS  Google Scholar 

  • Hehemann JH, Correc G, Thomas F, Bernard T, Barbeyron T, Jam M, Helbert W, Michel G, Czjzek M (2012) Biochemical and structural characterization of the complex agarolytic enzyme system from the marine bacterium Zobellia galactanivorans. J Biol Chem 287(36):30571–30584

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hong SJ, Lee JH, Kim EJ, Yang HJ, Park JS, Hong SK (2017a) Anti-obesity and anti-diabetic effect of neoagarooligosaccharides on high-fat diet-induced obesity in mice. Mar Drugs 15(4):90

    PubMed Central  Google Scholar 

  • Hong SJ, Lee JH, Kim EJ, Yang HJ, Park JS, Hong SK (2017b) Toxicological evaluation of neoagarooligosaccharides prepared by enzymatic hydrolysis of agar. Regul Toxicol Pharmacol 90:9–21

    PubMed  CAS  Google Scholar 

  • Hong SJ, Lee JH, Kim EJ, Yang HJ, Chang YK, Park JS, Hong SK (2017c) In vitro and in vivo investigation for biological activities of neoagarooligosaccharides prepared by hydrolyzing agar with β-agarase. Biotechnol Bioprocess Eng 22(4):489–496

    CAS  Google Scholar 

  • Hong SJ, Lee JH, Kim EJ, Lee YH, Jung HM, Hong SK (2019) Safety evaluation of β-agarase preparations from Streptomyces coelicolor A3(2). Regulatory Toxicology and Pharmacology 101:142–155

    PubMed  CAS  Google Scholar 

  • Jahromi ST, Barzkar N (2018) Future direction in marine bacterial agarases for industrial applications. Appl Microbiol Biotechnol 102(16):6847–6863

    PubMed  CAS  Google Scholar 

  • Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2016) Characteristics of thermoplastic sugar palm starch/agar blend: thermal, tensile, and physical properties. Int J Biol Macromol 89:575–581

    PubMed  CAS  Google Scholar 

  • Jung S, Jeong BC, Hong SK, Lee CR (2017a) Cloning, expression, and biochemical characterization of a novel acidic GH16 β-agarase, AgaJ11, from Gayadomonas joobiniege G7. Appl Biochem Biotechnol 181(3):961–971

    PubMed  CAS  Google Scholar 

  • Jung S, Lee CR, Chi WJ, Bae CH, Hong SK (2017b) Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Appl Microbiol Biotechnol 101(5):1965–1974

    PubMed  CAS  Google Scholar 

  • Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846

    PubMed  CAS  Google Scholar 

  • Kang DR, Yoon GY, Cho J, Lee SJ, Lee SJ, Park HJ, Kang TH, Han HD, Park WS, Yoon YK, Park YM, Jung ID (2017) Neoagarooligosaccharides prevent septic shock by modulating A20-and cyclooxygenase-2-mediated interleukin-10 secretion in a septic-shock mouse model. Biochem Biophys Res Commun 486(4):998–1004

    PubMed  CAS  Google Scholar 

  • Kazimierczak P, Palka K, Przekora A (2019) Development and optimization of the novel fabrication method of highly macroporous chitosan/agarose/nanohydroxyapatite bone scaffold for potential regenerative medicine applications. Biomolecules 9(9):434

    PubMed Central  CAS  Google Scholar 

  • Kim HT, Lee S, Kim KH, Choi IG (2012) The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour Technol 107:301–306

    PubMed  CAS  Google Scholar 

  • Kim HT, Yun EJ, Wang D, Chung JH, Choi IG, Kim KH (2013) High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour Technol 136:582–587

    PubMed  CAS  Google Scholar 

  • Kim JH, Yun EJ, Yu S, Kim KH, Kang NJ (2017a) Different levels of skin whitening activity among 3,6-anhydro-L-galactose, agarooligosaccharides, and neoagarooligosaccharides. Mar Drugs 15(10):321

    PubMed Central  Google Scholar 

  • Kim JH, Yun EJ, Seo N, Yu S, Kim DH, Cho KM, An HJ, Kim JH, Choi IG, Kim KH (2017b) Enzymatic liquefaction of agarose above the sol-gel transition temperature using a thermostable endo-type β-agarase, Aga16B. Appl Microbiol Biotechnol 101(3):1111–1120

    PubMed  CAS  Google Scholar 

  • Knutsen SH, Myslabodski DE, Larsen B, Usov AI (1994) A modified system of nomenclature for red algal galactans. Bot Mar 37(2):163–169

    CAS  Google Scholar 

  • Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S (1997) Neoagarobiose as a novel moisturizer with whitening effect. Biosci Biotechnol Biochem 61(1):162–163

    PubMed  CAS  Google Scholar 

  • Lam PL, Gambari R, Kok SH, Lam KH, Tang JC, Bian ZX, Lee KK, Chui CH (2015) Non-toxic agarose/gelatin-based microencapsulation system containing gallic acid for antifungal application. Int J Mol Med 35(2):503–510

    PubMed  CAS  Google Scholar 

  • Lee DG, Jang MK, Lee OH, Kim NY, Ju SA, Lee SH (2008) Over-production of a glycoside hydrolase family 50 β-agarase from Agarivorans sp. JA-1 in Bacillus subtilis and the whitening effect of its product. Biotechnol Lett 30(5):911–918

    PubMed  CAS  Google Scholar 

  • Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS (2011) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108(3):621–631

    PubMed  CAS  Google Scholar 

  • Lee DG, Jeon MJ, Lee SH (2012) Cloning, expression, and characterization of a glycoside hydrolase family 118 β-agarase from Agarivorans sp. JA-1. J Microbiol Biotechnol 22(12):1692–1697

    PubMed  CAS  Google Scholar 

  • Lee Y, Oh C, De Zoysa M, Kim H, Wickramaarachchi WD, Whang I, Kang DH, Lee J (2013) Molecular cloning, overexpression, and enzymatic characterization of glycosyl hydrolase family 16 β-Agarase from marine bacterium Saccharophagus sp. AG21 in Escherichia coli. J Microbiol Biotechnol 23(7):913–922

    PubMed  CAS  Google Scholar 

  • Lee CH, Kim HT, Yun EJ, Lee AR, Kim SR, Kim JH, Choi IG, Kim KH (2014) A novel agarolytic β-galactosidase acts on agarooligosaccharides for complete hydrolysis of agarose into monomers. Appl Environ Microbiol 80(19):5965–5973

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lee MH, Jang JH, Yoon GY, Lee SJ, Lee MG, Kang TH, Han HD, Kim HS, Choi WS, Park WS, Park YM, Jung ID (2017) Neoagarohexaose-mediated activation of dendritic cells via Toll-like receptor 4 leads to stimulation of natural killer cells and enhancement of antitumor immunity. BMB Rep 50(5):263–268

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lee Y, Jo E, Lee YJ, Hettiarachchi SA, Park GH, Lee SJ, Heo SJ, Kang DH, Oh C (2018a) A novel glycosyl hydrolase family 16 β-agarase from the agar-utilizing marine bacterium Gilvimarinus agarilyticus JEA5: the first molecular and biochemical characterization of agarase in genus Gilvimarinus. J Microbiol Biotechnol 28(5):776–783

    PubMed  CAS  Google Scholar 

  • Lee YR, Jung S, Chi WJ, Bae CH, Jeong BC, Hong SK, Lee CR (2018b) Biochemical characterization of a novel GH86 β-agarase producing neoagarohexaose from Gayadomonas joobiniege G7. J Microbiol Biotechnol 28(2):284–292

    PubMed  CAS  Google Scholar 

  • Lee CH, Lee CR, Hong SK (2019a) Biochemical characterization of a novel cold-adapted agarotetraose-producing α-agarase, AgaWS5, from Catenovulum sediminis WS1-A. Appl Microbiol Biotechnol 103(20):8403–8411

    PubMed  CAS  Google Scholar 

  • Lee JS, Hong SK, Lee CR, Nam SW, Jeon SJ, Kim YH (2019b) Production of ethanol from agarose by unified enzymatic saccharification and fermentation in recombinant yeast. J Microbiol Biotechnol 29(4):625–632

    PubMed  Google Scholar 

  • Li J, Sha Y, Seswita-Zilda D, Hu Q, He P (2014) Purification and characterization of thermostable agarase from Bacillus sp. BI-3, a thermophilic bacterium isolated from hot spring. J Microbiol Biotechnol 24(1):19–25

    PubMed  CAS  Google Scholar 

  • Li G, Sun M, Wu J, Ye M, Ge X, Wei W, Li H, Hu F (2015a) Identification and biochemical characterization of a novel endo-type β-agarase AgaW from Cohnella sp. strain LGH. Appl Microbiol Biotechnol 99(23):10019–10029

    PubMed  CAS  Google Scholar 

  • Li J, Hu Q, Li Y, Xu Y (2015b) Purification and characterization of cold-adapted β-agarase from an Antarctic psychrophilic strain. Braz J Microbiol 46(3):683–690

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li RK, Chen Z, Ying XJ, Ng TB, Ye XY (2018) A novel GH16 β-agarase isolated from a marine bacterium, Microbulbifer sp. BN3 and its characterization and high-level expression in Pichia pastoris. Int J Biol Macromol 119:1164–1170

    PubMed  CAS  Google Scholar 

  • Li J, Xie M, Gao Y (2019) Identification and biochemical characterization of a novel exo-type β-agarase Aga3463 from an Antarctic Pseudoalteromonas sp. strain. Int J Biol Macromol 129:162–170

    PubMed  CAS  Google Scholar 

  • Lin B, Liu Y, Lu G, Zhao M, Hu Z (2017) An agarase of glycoside hydrolase family 16 from marine bacterium Aquimarina agarilytica ZC1. FEMS Microbiol Lett 364(4):fnx012

    Google Scholar 

  • Lin F, Yang D, Huang Y, Zhao Y, Ye J, Xiao M (2019) The potential of neoagaro-oligosaccharides as a treatment of type II diabetes in mice. Mar Drugs 17(10):541

    PubMed Central  Google Scholar 

  • Liu J, Xue Z, Zhang W, Yan M, Xia Y (2018) Preparation and properties of wet-spun agar fibers. Carbohydr Polym 181:760–767

    PubMed  CAS  Google Scholar 

  • Liu J, Liu Z, Jiang C, Mao X (2019a) Biochemical characterization and substrate degradation mode of a novel α-agarase from Catenovulum agarivorans. J Agric Food Chem 67(37):10373–10379

    PubMed  CAS  Google Scholar 

  • Liu Y, Tian X, Peng C, Du Z (2019b) Isolation and characterization of an eosinophilic GH 16 β-agarase (AgaDL6) from an agar-degrading marine bacterium Flammeovirga sp. HQM9. J Microbiol Biotechnol 29(2):235–243

    PubMed  Google Scholar 

  • Long M, Yu Z, Xu X (2010) A novel β-agarase with high pH stability from marine Agarivorans sp. LQ48. Mar Biotechnol (NY) 12(1):62–69

    CAS  Google Scholar 

  • Ma C, Lu X, Shi C, Li J, Gu Y, Ma Y, Chu Y, Han F, Gong Q, Yu W (2007) Molecular cloning and characterization of a novel β-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J Biol Chem 282(6):3747–3754

    PubMed  CAS  Google Scholar 

  • Madera-Santana TJ, Robledo D, Freile-Pelegrin Y (2011) Physicochemical properties of biodegradable polyvinyl alcohol-agar films from the red algae Hydropuntia cornea. Mar Biotechnol (NY) 13(4):793–800

    CAS  Google Scholar 

  • Mai Z, Su H, Zhang S (2016) Isolation and characterization of a glycosyl hydrolase family 16 β-agarase from a mangrove soil metagenomic library. Int J Mol Sci 17(8):1360

    PubMed Central  Google Scholar 

  • Minegishi H, Shimane Y, Echigo A, Ohta Y, Hatada Y, Kamekura M, Maruyama T, Usami R (2013) Thermophilic and halophilic β-agarase from a halophilic archaeon Halococcus sp. 197A. Extremophiles 17(6):931–939

    PubMed  PubMed Central  CAS  Google Scholar 

  • Normand V, Lootens DL, Amici E, Plucknett KP, Aymard P (2000) New insight into agarose gel mechanical properties. Biomacromolecules 1(4):730–738

    PubMed  CAS  Google Scholar 

  • Oh C, Nikapitiya C, Lee Y, Whang I, Kim SJ, Kang DH, Lee J (2010) Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. J Ind Microbiol Biotechnol 37(5):483–494

    PubMed  CAS  Google Scholar 

  • Ohta Y, Nogi Y, Miyazaki M, Li Z, Hatada Y, Ito S, Horikoshi K (2004a) Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from the novel marine isolate, JAMB-A94. Biosci Biotechnol Biochem 68(5):1073–1081

    PubMed  CAS  Google Scholar 

  • Ohta Y, Hatada Y, Nogi Y, Miyazaki M, Li Z, Akita M, Hidaka Y, Goda S, Ito S, Horikoshi K (2004b) Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer. Appl Microbiol Biotechnol 64(4):505–514

    PubMed  CAS  Google Scholar 

  • Ohta Y, Hatada Y, Miyazaki M, Nogi Y, Ito S, Horikoshi K (2005) Purification and characterization of a novel α-agarase from a Thalassomonas sp. Curr Microbiol 50(4):212–216

    PubMed  CAS  Google Scholar 

  • Ostergaard S, Olsson L, Johnston M, Nielsen J (2000) Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat Biotechnol 18(12):1283–1286

    PubMed  CAS  Google Scholar 

  • Pandit P, Nadathur GT, Maiti S, Regubalan B (2018) Functionality and properties of bio-based materials. In: Ahmed S (ed) Bio-based materials for food packaging. Springer, Singapore

    Google Scholar 

  • Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ (2012) Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:83–88

    PubMed  CAS  Google Scholar 

  • Park MJ, Ryu HS, Kim JS, Lee HK, Kang JS, Yun J, Kim SY, Lee MK, Hong JT, Kim Y, Han SB (2014) Platycodon grandiflorum polysaccharide induces dendritic cell maturation via TLR4 signaling. Food Chem Toxicol 72:212–220

    PubMed  CAS  Google Scholar 

  • Potin P, Richard C, Rochas C, Kloareg B (1993) Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. Eur J Biochem 214(2):599–607

    PubMed  CAS  Google Scholar 

  • Qu W, Lin D, Zhang Z, Di W, Gao B, Zeng R (2018) Metagenomics investigation of agarlytic genes and genomes in mangrove sediments in China: a potential repertory for carbohydrate-active enzymes. Front Microbiol 9:1864

    PubMed  PubMed Central  Google Scholar 

  • Ramos KRM, Valdehuesa KNG, Maza PAMM, Nisola GM, Lee WK, Chung WJ (2017) Overexpression and characterization of a novel α-neoagarobiose hydrolase and its application in the production of D-galactonate from Gelidium amansii. Process Biochem 63:105–112

    CAS  Google Scholar 

  • Ranalli G, Zanardini E, Rampazzi L, Corti C, Andreotti A, Colombini MP, Bosch-Roig P, Lustrato G, Giantomassi C, Zari D, Virilli P (2019) Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteria gel. J Appl Microbiol 126(6):1785–1796

    PubMed  CAS  Google Scholar 

  • Rani GU, Mishra S, Pathak G, Jha U, Sen G (2013) Synthesis and applications of poly(2-hydroxyethylmethacrylate) grafted agar: a microwave based approach. Int J Biol Macromol 61:276–284

    PubMed  CAS  Google Scholar 

  • Ren A, Xia ZX, Yu W, Zhou J (2010) Expression, crystallization and preliminary X-ray analysis of an anomeric inverting agarase from Pseudoalteromonas sp. CY24. Acta Crystallogr Sect F Struct Biol Cryst Commun 66(Pt 12):1635–1639

    PubMed  PubMed Central  CAS  Google Scholar 

  • Renn D (1997) Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends Biotechnol 15(1):9–14

    CAS  Google Scholar 

  • Ruan H, Dong LQ (2016) Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol 8(2):101–109

    PubMed  PubMed Central  CAS  Google Scholar 

  • Song T, Cao Y, Xu H, Zhang W, Fei B, Qiao D, Cao Y (2014) Purification and characterization of a novel β-agarase of Paenibacillus sp. SSG-1 isolated from soil. J Biosci Bioeng 118(2):125–129

    PubMed  CAS  Google Scholar 

  • Song T, Xu H, Wei C, Jiang T, Qin S, Zhang W, Cao Y, Hu C, Zhang F, Qiao D, Cao Y (2016) Horizontal transfer of a novel soil agarase gene from marine bacteria to soil bacteria via human microbiota. Sci Rep 6:34103

    PubMed  PubMed Central  CAS  Google Scholar 

  • Su Q, Jin T, Yu Y, Yang M, Mou H, Li L (2017) Extracellular expression of a novel β-agarase from Microbulbifer sp. Q7, isolated from the gut of sea cucumber. AMB Express 7(1):220

    PubMed  PubMed Central  Google Scholar 

  • Trayhurn P (2005) The biology of obesity. Proc Nutr Soc 64(1):31–38

    PubMed  CAS  Google Scholar 

  • Turer AT, Scherer PE (2012) Adiponectin: mechanistic insights and clinical implications. Diabetologia 55(9):2319–2326

    PubMed  CAS  Google Scholar 

  • Usov AI (1998) Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydro 12(3):301–308

    CAS  Google Scholar 

  • Van Der Meulen HJ, Harder W (1976) Characterization of the neoagarotetra-ase and neoagarobiase of Cytophaga flevensis. Antonie Van Leeuwenhoek 42(1–2):81–94

    Google Scholar 

  • Veerakumar S, Manian RP (2018) Recombinant β-agarases: insights into molecular, biochemical, and physiochemical characteristics. 3. Biotech 8(10):445

    Google Scholar 

  • Wang W, Liu P, Hao C, Wu L, Wan W, Mao X (2017) Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways. Sci Rep 7:44252

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu T, Guo S, Zhang P, Sun P, Chen M, Ming H (2019) Characterization and overexpression of a glycosyl hydrolase family 16 β-agarase Aga0917 from Pseudoalteromonas fuliginea YTW1-15-1. J Gen Appl Microbiol 64(6):276–283

    PubMed  Google Scholar 

  • Watanabe T, Kashimura K, Kirimura K (2016) Purification, characterization and gene identification of a α-neoagarooligosaccharide hydrolase from an alkaliphilic bacterium Cellvibrio sp. WU-0601. J Mol Catal B Enzym 133(Supplement 1):S328–S336

    Google Scholar 

  • Wu YR, Zhang M, Zhong M, Hu Z (2017) Synergistic enzymatic saccharification and fermentation of agar for biohydrogen production. Bioresour Technol 241:369–373

    PubMed  CAS  Google Scholar 

  • Xie W, Lin B, Zhou Z, Lu G, Lun J, Xia C, Li S, Hu Z (2013) Characterization of a novel β-agarase from an agar-degrading bacterium Catenovulum sp. X3. Appl Microbiol Biotechnol 97(11):4907–4915

    PubMed  CAS  Google Scholar 

  • Yang JH, Cho SS, Kim KM, Kim JY, Kim EJ, Park EY, Lee JH (2017) Ki SH (2017) Neoagarooligosaccharides enhance the level and efficiency of LDL receptor and improve cholesterol homeostasis. J Funct Foods 38:529–539

    CAS  Google Scholar 

  • Yu S, Yun EJ, Kim DH, Park SY, Kim KH (2019) Anticariogenic Activity of Agarobiose and Agarooligosaccharides Derived from Red Macroalgae. Journal of Agricultural and Food Chemistry 67(26):7297–7303

    PubMed  CAS  Google Scholar 

  • Yu S, Yun EJ, Kim DH, Park SY, Kim KH (2020) Molecular and enzymatic verification of the dual agarolytic pathways in a marine bacterium, Vibrio sp. strain EJY3. Appl Environ Microbiol

  • Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, Pelton JG, Kang NJ, Choi IG, Kim KH (2013) Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl Microbiol Biotechnol 97(7):2961–2970

    PubMed  CAS  Google Scholar 

  • Yun EJ, Lee S, Kim HT, Pelton JG, Kim S, Ko HJ, Choi IG, Kim KH (2015) The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ Microbiol 17(5):1677–1688

    PubMed  CAS  Google Scholar 

  • Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi IG, Kim KH (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol 199:311–318

    PubMed  CAS  Google Scholar 

  • Yun EJ, Yu S, Kim KH (2017) Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Appl Microbiol Biotechnol 101(14):5581–5589

    PubMed  CAS  Google Scholar 

  • Yun EJ, Yu S, Kim S, Kim KH (2018) Metabolomic response of a marine bacterium to 3,6-anhydro-L-galactose, the rare sugar from red macroalgae, as the sole carbon source. J Biotechnol 270:12–20

    PubMed  CAS  Google Scholar 

  • Zhang N, Mao X, Li RW, Hou E, Wang Y, Xue C, Tang Q (2017) Neoagarotetraose protects mice against intense exercise-induced fatigue damage by modulating gut microbial composition and function. Mol Nutr Food Res 61(8):1600585

    Google Scholar 

  • Zhang W, Xu J, Liu D, Liu H, Lu X, Yu W (2018) Characterization of an α-agarase from Thalassomonas sp. LD5 and its hydrolysate. Appl Microbiol Biotechnol 102(5):2203–2212

    PubMed  CAS  Google Scholar 

  • Zhu Y, Zhao R, Xiao A, Li L, Jiang Z, Chen F, Ni H (2016) Characterization of an alkaline β-agarase from Stenotrophomonas sp. NTa and the enzymatic hydrolysates. Int J Biol Macromol 86:525–534

    PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by research grants from the NRF funded by the Ministry of Science and ICT (NRF-2018R1A1A1A05023049) and Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01328801) founded by Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Kwang Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

This article contains studies with experimental rats, which was approved by Institutional Animal Care and Use Committee (permission number of 2013-05-121) at Gyeonggi Bio Center, Republic of Korea.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.H., Lee, CR. & Hong, SK. Implications of agar and agarase in industrial applications of sustainable marine biomass. Appl Microbiol Biotechnol 104, 2815–2832 (2020). https://doi.org/10.1007/s00253-020-10412-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10412-6

Keywords

Navigation