Skip to main content
Log in

Differential Contributions of Actin and Myosin to the Physical Phenotypes and Invasion of Pancreatic Cancer Cells

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Metastasis is a fundamentally physical process in which cells deform through narrow gaps and generate forces to invade surrounding tissues. While it is commonly thought that increased cell deformability is an advantage for invading cells, we previously found that more invasive pancreatic ductal adenocarcinoma (PDAC) cells are stiffer than less invasive PDAC cells. Here we investigate potential mechanisms of the simultaneous increase in PDAC cell stiffness and invasion, focusing on the contributions of myosin II, Arp2/3, and formins.

Method

We measure cell invasion using a 3D scratch wound invasion assay and cell stiffness using atomic force microscopy (AFM). To determine the effects of actin- and myosin-mediated force generation on cell stiffness and invasion, we treat cells with pharmacologic inhibitors of myosin II (blebbistatin), Arp2/3 (CK-666), and formins (SMIFH2).

Results

We find that the activity of myosin II, Arp2/3, and formins all contribute to the stiffness of PDAC cells. Interestingly, we find that the invasion of PDAC cell lines is differentially affected when the activity of myosin II, Arp2/3, or formins is inhibited, suggesting that despite having similar tissue origins, different PDAC cell lines may rely on different mechanisms for invasion.

Conclusions

These findings deepen our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incite further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ali, M. H., D. P. Pearlstein, C. E. Mathieu, P. T. Schumacker, H. Mir, and T. Paul. Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction. Am. J. Physiol. Lung Cell. Mol. Physiol. 60637:486–496, 2004.

    Google Scholar 

  2. Arjonen, A., et al. Mutant p53–associated myosin-X upregulation promotes breast cancer invasion and metastasis. J. Clin. Invest. 124:1069–1082, 2014.

    Google Scholar 

  3. Barretina, J., et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607, 2012.

    Google Scholar 

  4. Beadle, C., M. C. Assanah, P. Monzo, R. Vallee, S. S. Rosenfeld, and P. Canoll. The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19:3357–3368, 2008.

    Google Scholar 

  5. Bieling, P., et al. Force feedback controls motor activity and mechanical properties of self-assembling branched actin networks. Cell 164:115–127, 2016.

    Google Scholar 

  6. Bronte, G., et al. Driver mutations and differential sensitivity to targeted therapies: a new approach to the treatment of lung adenocarcinoma. Cancer Treat. Rev. 36(Suppl 3):S21–S29, 2010.

    Google Scholar 

  7. Burridge, K., and C. Guilluy. Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343:14–20, 2016.

    Google Scholar 

  8. Calzado-Martín, A., M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo. Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy. ACS Nano 10:3365–3374, 2016.

    Google Scholar 

  9. Cartagena-Rivera, A. X., J. S. Logue, C. M. Waterman, and R. S. Chadwick. Actomyosin cortical mechanical properties in nonadherent cells determined by atomic force microscopy. Biophys. J. 110:2528–2539, 2016.

    Google Scholar 

  10. Chan, C. J., et al. Myosin II activity softens cells in suspension. Biophys. J. 108:1856–1869, 2015.

    Google Scholar 

  11. Chan, C. K., et al. Tumour-suppressor microRNAs regulate ovarian cancer cell physical properties and invasive behaviour. Open Biol. 6:160275, 2016.

    Google Scholar 

  12. Chang, D. Z. Mast cells in pancreatic ductal adenocarcinoma. OncoImmunology 1:754–755, 2012.

    Google Scholar 

  13. Chen, Y.-W., et al. SMAD4 Loss triggers the phenotypic changes of pancreatic ductal adenocarcinoma cells. BMC Cancer 14:181, 2014.

    Google Scholar 

  14. Chin, L., Y. Xia, D. E. Discher, and P. A. Janmey. Mechanotransduction in cancer. Curr. Opin. Chem. Eng. 11:77–84, 2016.

    Google Scholar 

  15. Cross, S. E., Y.-S. Jin, J. Rao, and J. K. Gimzewski. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2:780–783, 2007.

    Google Scholar 

  16. Cuadrado, A., Z. Martin-Moldes, J. Ye, and I. Lastres-Becker. Transcription factors NRF2 and NF-κB are coordinated effectors of the rho family, GTP-binding protein RAC1 during inflammation. J. Biol. Chem. 289:15244–15258, 2014.

    Google Scholar 

  17. Deer, E. L., et al. Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39:425–435, 2010.

    Google Scholar 

  18. Denais, C. M., et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352:353–358, 2016.

    Google Scholar 

  19. Dobin, A., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21, 2013.

    Google Scholar 

  20. Duxbury, M. S., S. W. Ashley, and E. E. Whang. Inhibition of pancreatic adenocarcinoma cellular invasiveness by blebbistatin: a novel myosin II inhibitor. Biochem. Biophys. Res. Commun. 313:992–997, 2004.

    Google Scholar 

  21. Ellerbroek, S. M., Y. I. Wu, C. M. Overall, and M. S. Stack. Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. J. Biol. Chem. 276:24833–24842, 2001.

    Google Scholar 

  22. Ellerbroek, S. M., et al. Ovarian carcinoma regulation of matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase through beta1 integrin. Cancer Res. 59:1635–1641, 1999.

    Google Scholar 

  23. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Google Scholar 

  24. Even-Ram, S., A. D. Doyle, M. A. Conti, K. Matsumoto, R. S. Adelstein, and K. M. Yamada. Myosin IIA regulates cell motility and actomyosin–microtubule crosstalk. Nat. Cell Biol. 9:299–309, 2007.

    Google Scholar 

  25. Faria, E. C., et al. Measurement of elastic properties of prostate cancer cells using AFM. Analyst 133:1498, 2008.

    Google Scholar 

  26. Fletcher, D. A., and R. D. Mullins. Cell mechanics and the cytoskeleton. Nature 463:485–492, 2010.

    Google Scholar 

  27. Frantz, C., K. M. Stewart, and V. M. Weaver. The extracellular matrix at a glance. J. Cell Sci. 123:4195–4200, 2010.

    Google Scholar 

  28. Fritzsche, M., C. Erlenkämper, E. Moeendarbary, G. Charras, and K. Kruse. Actin kinetics shapes cortical network structure and mechanics. Sci. Adv. 2:e1501337, 2016.

    Google Scholar 

  29. Gardberg, M., et al. FHOD1, a formin upregulated in epithelial-mesenchymal transition, participates in cancer cell migration and invasion. PLoS ONE 8:e74923, 2013.

    Google Scholar 

  30. Gardel, M. L., I. C. Schneider, Y. Aratyn-Schaus, and C. M. Waterman. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26:315–333, 2010.

    Google Scholar 

  31. Goley, E. D., and M. D. Welch. The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7:713–726, 2006.

    Google Scholar 

  32. Harada, T., et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204:669–682, 2014.

    Google Scholar 

  33. Harsha, H. C., et al. A compendium of potential biomarkers of pancreatic cancer. PLoS Med. 6:e1000046, 2009.

    Google Scholar 

  34. Henson, J. H., et al. Arp2/3 complex inhibition radically alters lamellipodial actin architecture, suspended cell shape, and the cell spreading process. Mol. Biol. Cell 26:887–900, 2015.

    Google Scholar 

  35. Hetrick, B., M. S. Han, L. A. Helgeson, and B. J. Nolen. Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change. Chem. Biol. 20:701–712, 2013.

    Google Scholar 

  36. Jaqaman, K., and S. Grinstein. Regulation from within: the cytoskeleton in transmembrane signaling. Trends Cell Biol. 22:515–526, 2012.

    Google Scholar 

  37. Jimenez Valencia, A. M., et al. Collective cancer cell invasion induced by coordinated contractile stresses. Oncotarget 6:43438–43451, 2015.

    Google Scholar 

  38. Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3:422–433, 2003.

    Google Scholar 

  39. Katt, M. E., A. L. Placone, A. D. Wong, Z. S. Xu, and P. C. Searson. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol. 4:12, 2016.

    Google Scholar 

  40. Kim, S., and P. A. Coulombe. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat. Rev. Mol. Cell Biol. 11:75–81, 2010.

    Google Scholar 

  41. Kim, H.-C., Y.-J. Jo, N.-H. Kim, and S. Namgoong. Small molecule inhibitor of formin homology 2 domains (SMIFH2) reveals the roles of the formin family of proteins in spindle assembly and asymmetric division in mouse oocytes. PLoS ONE 10:e0123438, 2015.

    Google Scholar 

  42. Kim, T.-H., A. C. Rowat, and E. K. Sloan. Neural regulation of cancer: from mechanobiology to inflammation. Clin. Transl. Immunol. 5:e78, 2016.

    Google Scholar 

  43. Kim, T.-H., et al. Cancer cells become less deformable and more invasive with activation of β-adrenergic signaling. J. Cell Sci. 129:4563–4575, 2016.

    Google Scholar 

  44. Koenderink, G. H., et al. An active biopolymer network controlled by molecular motors. Proc. Natl. Acad. Sci. USA 106:15192–15197, 2009.

    Google Scholar 

  45. Köhler, S., A. R. Bausch, M. Welch, J. Peloquin, and T. Svitkina. Contraction mechanisms in composite active actin networks. PLoS ONE 7:e39869, 2012.

    Google Scholar 

  46. Kovács, M., J. Tóth, C. Hetényi, A. Málnási-Csizmadia, and J. R. Sellers. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279:35557–35563, 2004.

    Google Scholar 

  47. Kraning-Rush, C. M., J. P. Califano, and C. A. Reinhart-King. Cellular traction stresses increase with increasing metastatic potential. PLoS ONE 7:e32572, 2012.

    Google Scholar 

  48. Kumar, S., and V. M. Weaver. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28:113–127, 2009.

    Google Scholar 

  49. Laevsky, G., and D. A. Knecht. Cross-linking of actin filaments by myosin II is a major contributor to cortical integrity and cell motility in restrictive environments. J. Cell Sci. 116:3761–3770, 2003.

    Google Scholar 

  50. Liu, S., R. H. Goldstein, E. M. Scepansky, and M. Rosenblatt. Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Res. 69:8742–8751, 2009.

    Google Scholar 

  51. Lopez, J. I., I. Kang, W.-K. You, D. M. McDonald, and V. M. Weaver. In situ force mapping of mammary gland transformation. Integr. Biol. 3:910, 2011.

    Google Scholar 

  52. Maly, I. V., T. M. Domaradzki, V. A. Gosy, and W. A. Hofmann. Myosin isoform expressed in metastatic prostate cancer stimulates cell invasion. Sci. Rep. 7:8476, 2017.

    Google Scholar 

  53. Matsubara, M., and M. J. Bissell. Inhibitors of Rho kinase (ROCK) signaling revert the malignant phenotype of breast cancer cells in 3D context. Oncotarget. 7:31602–31622, 2016.

    Google Scholar 

  54. McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.

    Google Scholar 

  55. Mendez, M. G., S.-I. Kojima, and R. D. Goldman. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 24:1838–1851, 2010.

    Google Scholar 

  56. Mey, I., A. Janshoff, J. Rother, and H. No. Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biol. 4:140046, 2014.

    Google Scholar 

  57. Mierke, C., D. Rosel, B. Fabry, and J. Brabek. Contractile forces in tumor cell migration. Eur. J. Cell Biol. 87:669–676, 2008.

    Google Scholar 

  58. Mih, J. D., A. Marinkovic, F. Liu, A. S. Sharif, and D. J. Tschumperlin. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J. Cell Sci. 125:5974–5983, 2012.

    Google Scholar 

  59. Murrell, M., P. W. Oakes, M. Lenz, and M. L. Gardel. Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 16:486–498, 2015.

    Google Scholar 

  60. Nakayama, M., et al. Rho-kinase and myosin II activities are required for cell type and environment specific migration. Genes Cells 10:107–117, 2005.

    Google Scholar 

  61. Nguyen, A. V., et al. Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr. Biol. 8:1232–1245, 2016.

    Google Scholar 

  62. Noël, A. C., et al. Invasion of reconstituted basement membrane matrix is not correlated to the malignant metastatic cell phenotype. Cancer Res. 51:405–414, 1991.

    Google Scholar 

  63. Nyberg, K. D., K. H. Hu, S. H. Kleinman, D. B. Khismatullin, M. J. Butte, and A. C. Rowat. Quantitative deformability cytometry (q-DC): rapid measurements of single cell viscoelastic properties. Biophys. J. 113:1574–1584, 2017.

    Google Scholar 

  64. Nyberg, K. D., et al. Predicting cancer cell invasion by single-cell physical phenotyping. Integr. Biol. 10:218–231, 2018.

    Google Scholar 

  65. Ouderkirk, J. L., and M. Krendel. Non-muscle myosins in tumor progression, cancer cell invasion, and metastasis. Cytoskeleton 71:447–463, 2014.

    Google Scholar 

  66. Page-McCaw, A., A. J. Ewald, and Z. Werb. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8:221–233, 2007.

    Google Scholar 

  67. Krakhmal, N. V., M. V. Zavyalova, E. V. Denisov, S. V. Vtorushin, and V. M. Perelmuter. Cancer invasion: patterns and mechanisms. Acta Nat. 7:17–28, 2015.

    Google Scholar 

  68. Plodinec, M., et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7:757–765, 2012.

    Google Scholar 

  69. Poincloux, R., et al. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc. Natl. Acad. Sci. USA 108:1943–1948, 2011.

    Google Scholar 

  70. Provenzano, P. P., D. R. Inman, K. W. Eliceiri, S. M. Trier, and P. J. Keely. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95:5374–5384, 2008.

    Google Scholar 

  71. Pruyne, D., et al. Role of formins in actin assembly: nucleation and barbed-end association. Science 297:612–615, 2002.

    Google Scholar 

  72. Raab, M., et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352:359–362, 2016.

    Google Scholar 

  73. Rasheed, Z. A., W. Matsui, and A. Maitra. Pathology of pancreatic stroma in PDAC. In: Pancreatic Cancer and Tumor Microenvironment, edited by P. J. Grippo, and H. G. Munshi. Trivandrum: Transworld Research Network, 2012.

    Google Scholar 

  74. Rathje, L.-S. Z., et al. Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness. Proc. Natl. Acad. Sci. USA 111:1515–1520, 2014.

    Google Scholar 

  75. Rauhala, H. E., S. Teppo, S. Niemelä, and A. Kallioniemi. Silencing of the ARP2/3 complex disturbs pancreatic cancer cell migration. Anticancer Res. 33:45–52, 2013.

    Google Scholar 

  76. Revach, O.-Y., A. Weiner, K. Rechav, I. Sabanay, A. Livne, and B. Geiger. Mechanical interplay between invadopodia and the nucleus in cultured cancer cells. Sci. Rep. 5:9466, 2015.

    Google Scholar 

  77. Ridley, A. J. RhoA, RhoB and RhoC have different roles in cancer cell migration. J. Microsc. 251:242–249, 2013.

    Google Scholar 

  78. Rizvi, S. A., et al. Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. Chem. Biol. 16:1158–1168, 2009.

    Google Scholar 

  79. Rodriguez-Hernandez, I., G. Cantelli, F. Bruce, and V. Sanz-Moreno. Rho, ROCK and actomyosin contractility in metastasis as drug targets. F1000Research 5:783, 2016.

    Google Scholar 

  80. Rowat, A. C., J. Lammerding, H. Herrmann, and U. Aebi. Towards an integrated understanding of the structure and mechanics of the cell nucleus. BioEssays 30:226–236, 2008.

    Google Scholar 

  81. Rowat, A. C., et al. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288:8610–8618, 2013.

    Google Scholar 

  82. Salbreux, G., G. Charras, and E. Paluch. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22:536–545, 2012.

    Google Scholar 

  83. Sato, N., N. Maehara, G. H. Su, and M. Goggins. Effects of 5-Aza-2’-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. J. Natl. Cancer Inst. 95:327–330, 2003.

    Google Scholar 

  84. Sen, S., and S. Kumar. Cell-matrix de-adhesion dynamics reflect contractile mechanics. Cell. Mol. Bioeng. 2:218–230, 2009.

    Google Scholar 

  85. Shi, Q., et al. A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth. Mol. Carcinog. 46:488–496, 2007.

    Google Scholar 

  86. Shields, M. A., S. Dangi-Garimella, S. B. Krantz, D. J. Bentrem, and H. G. Munshi. Pancreatic cancer cells respond to type I collagen by inducing snail expression to promote membrane type 1 matrix metalloproteinase-dependent collagen invasion. J. Biol. Chem. 286:10495–10504, 2011.

    Google Scholar 

  87. Sipos, B., et al. Vascular endothelial growth factor mediated angiogenic potential of pancreatic ductal carcinomas enhanced by hypoxia: an in vitro and in vivo study. Int. J. Cancer 102:592–600, 2002.

    Google Scholar 

  88. Smith, B. A., B. Tolloczko, J. G. Martin, and P. Grütter. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys. J. 88:2994–3007, 2005.

    Google Scholar 

  89. Sodek, K. L., T. J. Brown, and M. J. Ringuette. Collagen I but not Matrigel matrices provide an MMP-dependent barrier to ovarian cancer cell penetration. BMC Cancer 8:223, 2008.

    Google Scholar 

  90. Southern, B. D., et al. Matrix-driven myosin II mediates the pro-fibrotic fibroblast phenotype. J. Biol. Chem. 291:6083–6095, 2016.

    Google Scholar 

  91. Stossel, T. P., and J. H. Hartwig. Filling gaps in signaling to actin cytoskeletal remodeling. Dev. Cell 4:444–445, 2003.

    Google Scholar 

  92. Strouch, M. J., et al. Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin. Cancer Res. 16:2257–2265, 2010.

    Google Scholar 

  93. Suraneni, P., B. Rubinstein, J. R. Unruh, M. Durnin, D. Hanein, and R. Li. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 197:239–251, 2012.

    Google Scholar 

  94. Suraneni, P., et al. A mechanism of leading-edge protrusion in the absence of Arp2/3 complex. Mol. Biol. Cell 26:901–912, 2015.

    Google Scholar 

  95. Swaminathan, V., K. Mythreye, E. Tim O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71:5075–5080, 2011.

    Google Scholar 

  96. Swift, J., et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104, 2013.

    Google Scholar 

  97. Symowicz, J., et al. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res. 67:2030–2039, 2007.

    Google Scholar 

  98. Takai, E., and S. Yachida. Genomic alterations in pancreatic cancer and their relevance to therapy. World J. Gastrointest. Oncol. 7:250–258, 2015.

    Google Scholar 

  99. Tan, J. L., J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 100:1484–1489, 2003.

    Google Scholar 

  100. Trapnell, C., et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28:511–515, 2010.

    Google Scholar 

  101. Tse, H. T. K., et al. Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci. Transl. Med. 5:212ra163, 2013.

    Google Scholar 

  102. Tseng, Y., et al. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochem. Biophys. Res. Commun. 334:183–192, 2005.

    Google Scholar 

  103. Unbekandt, M., et al. A novel small-molecule MRCK inhibitor blocks cancer cell invasion. Cell Commun. Signal. 12:1–15, 2014.

    Google Scholar 

  104. Vennin, C., et al. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci. Transl. Med. 9:eaai8504, 2017.

    Google Scholar 

  105. Wang, Z.-M., D.-S. Yang, J. Liu, H.-B. Liu, M. Ye, and Y.-F. Zhang. ROCK inhibitor Y-27632 inhibits the growth, migration, and invasion of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma. Tumor Biol. 37:3757–3764, 2016.

    Google Scholar 

  106. Wei, L., M. Surma, S. Shi, N. Lambert-Cheatham, and J. Shi. Novel insights into the roles of rho kinase in cancer. Arch. Immunol. Ther. Exp. (Warsz) 64:259–278, 2016.

    Google Scholar 

  107. Weng, S., Y. Shao, W. Chen, and J. Fu. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis. Nat. Mater. 15:961–967, 2016.

    Google Scholar 

  108. Wirtz, D., K. Konstantopoulos, and P. C. Searson. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11:512–522, 2011.

    Google Scholar 

  109. Wolf, K., et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201:1069–1084, 2013.

    Google Scholar 

  110. Xiao, F., X. Wen, and P. Y. Chiou. Plasmonic micropillars for massively parallel precision cell force measurement. Micro Electro Mech. Syst. 1:243–246, 2017.

    Google Scholar 

  111. Xiao, F., X. Wen, X. H. M. Tan, and P.-Y. Chiou. Plasmonic micropillars for precision cell force measurement across a large field-of-view. Appl. Phys. Lett. 112:033701, 2018.

    Google Scholar 

  112. Xu, W., R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 7:e46609, 2012.

    Google Scholar 

  113. Yachida, S., et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:1114–1117, 2010.

    Google Scholar 

  114. Yamaguchi, H., and J. Condeelis. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773:642–652, 2007.

    Google Scholar 

  115. Ying, H., et al. The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Mol. Cancer Ther. 5:2158–2164, 2006.

    Google Scholar 

  116. Yu, H. W., et al. PIX controls intracellular viscoelasticity to regulate lung cancer cell migration. J. Cell Mol. Med. 19:934–947, 2015.

    Google Scholar 

  117. Zaidel-Bar, R., G. Zhenhuan, and C. Luxenburg. The contractome—a systems view of actomyosin contractility in non-muscle cells. J. Cell Sci. 128:1–9, 2015.

    Google Scholar 

  118. Zhang, W., et al. Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells. Proc. Natl. Acad. Sci. USA 109:18707–18712, 2012.

    Google Scholar 

  119. Zhao, S., Y. Wang, L. Cao, M. M. Ouellette, and J. W. Freeman. Expression of oncogenic K-ras and loss of Smad4 cooperate to induce the expression of EGFR and to promote invasion of immortalized human pancreas ductal cells. Int. J. Cancer 127:2076–2087, 2010.

    Google Scholar 

  120. Zhao, X., et al. Hypoxia-Inducible factor-1 promotes pancreatic ductal adenocarcinoma invasion and metastasis by activating transcription of the actin-Bundling protein fascin. Cancer Res. 74:2455–2464, 2014.

    Google Scholar 

  121. Zhou, L., et al. Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector. Biomech. Model. Mechanobiol. 17:191–203, 2018.

    Google Scholar 

  122. Zhu, F., et al. Rho kinase inhibitor fasudil suppresses migration and invasion though down-regulating the expression of VEGF in lung cancer cell line A549. Med. Oncol. 28:565–571, 2011.

    Google Scholar 

Download references

Acknowledgments

We thank our funding sources: the National Science Foundation (CAREER DBI-1254185 and BMMB-1906165 to ACR), the Farber Family Foundation, and UCLA Integrative Biology & Physiology Eureka Scholarship (to AVN), and the National Institutes of Health (R01 GM110482 to MJB). We would also like to thank Timothy Donahue and his laboratory for their insights into PDAC, as well as their generous contributions of the PDAC cell lines used in our studies. We are also grateful to Gordon Robertson and Ewan Gibb for their bioinformatics expertise. The MMP activity assay was performed in the UCLA Molecular Shared Screening Resource in the California NanoSystems Institute with technical support from Robert Damoiseaux and Bobby Tofig.

Conflict of interest

Angelyn V. Nguyen, Brittany Trompetto, Xing Haw Marvin Tan, Michael B. Scott, Kenneth Hsueh-heng Hu, Eric Deeds, Manish J. Butte, Pei Yu Chiou, and Amy C. Rowat have no conflicts of interest.

Ethical standards

No human or animals studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy C. Rowat.

Additional information

Associate Editor Partha Roy oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, A.V., Trompetto, B., Tan, X.H.M. et al. Differential Contributions of Actin and Myosin to the Physical Phenotypes and Invasion of Pancreatic Cancer Cells. Cel. Mol. Bioeng. 13, 27–44 (2020). https://doi.org/10.1007/s12195-019-00603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-019-00603-1

Keywords

Navigation