Skip to main content
Log in

Probing the function of long noncoding RNAs in the nucleus

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The nucleus is a highly organized and dynamic environment where regulation and coordination of processes such as gene expression and DNA replication are paramount. In recent years, noncoding RNAs have emerged as key participants in the regulation of nuclear processes. There are a multitude of functional roles for long noncoding RNA (lncRNA), mediated through their ability to act as molecular scaffolds bridging interactions with proteins, chromatin, and other RNA molecules within the nuclear environment. In this review, we discuss the diversity of techniques that have been developed to probe the function of nuclear lncRNAs, along with the ways in which those techniques have revealed insights into their mechanisms of action. Foundational observations into lncRNA function have been gleaned from molecular cytology-based, single-cell approaches to illuminate both the localization and abundance of lncRNAs in addition to their potential binding partners. Biochemical, extraction-based approaches have revealed the molecular contacts between lncRNAs and other molecules within the nuclear environment and how those interactions may contribute to nuclear organization and regulation. Using examples of well-studied nuclear lncRNAs, we demonstrate that the emerging functions of individual lncRNAs have been most clearly deduced from combined cytology and biochemical approaches tailored to study specific lncRNAs. As more functional nuclear lncRNAs continue to emerge, the development of additional technologies to study their interactions and mechanisms of action promise to continually expand our understanding of nuclear organization, chromosome architecture, genome regulation, and disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

lncRNA:

Long non-coding RNA

miRNA:

MicroRNA

piRNA:

Piwi-interacting RNA

crasiRNA:

Centromere repeat-associated small interacting RNA

FISH:

Fluorescence in situ hybridization

SIM:

Structured illumination microscopy

STED:

Stimulated emission depletion

STORM:

Stochastic optical reconstruction microscopy

PALM:

Photo-activated localization microscopy

NEAT1:

Nuclear-enriched abundant transcript 1

XIST:

X-inactive specific transcript

HSAT:

Human satellite

LINE:

Long interspersed nuclear element

CAST:

Cancer-associated satellite transcript

RNP:

Ribonuclear protein

RBP:

RNA binding protein

SILAC:

Stable isotope labeling by amino acids in cell culture

CHIRP:

Comprehensive identification of RNA-binding proteins

RAP:

RNA antisense purification

MS:

Mass spectrometry

CHART:

Capture hybridization analysis of RNA targets

RRM:

RNA recognition motif

RBD:

RNA binding domain

RBR:

RNA binding region

IDR:

Intrinsically disordered region

SHAPE:

Selective 2′-hydroxyl acylation and primer extension

PARIS:

Psoralen analysis of RNA structures and interactions

CLIP:

Cross-linking and immunoprecipitation

TRIBE:

Targets of RNA-binding proteins identified by editing

LIGR:

Ligation of interacting RNA

ASO:

Antisense oligonucleotide

LNA:

Locked nucleic acid

References

  • Altemose N, Miga KH, Maggioni M, Willard HF (2014) Genomic characterization of large heterochromatic gaps in the human genome assembly. PLoS Comput Biol 10:e1003628

    PubMed  PubMed Central  Google Scholar 

  • Amodio N, Raimondi L, Juli G, Stamato MA, Caracciolo D, Tagliaferri P, Tassone P (2018a) MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. In J Hematol Oncol 11

  • Amodio N, Stamato MA, Juli G, Morelli E, Fulciniti M, Manzoni M, Taiana E, Agnelli L, Cantafio MEG, Romeo E, Raimondi L, Caracciolo D, Zuccalà V, Rossi M, Neri A, Munshi NC, Tagliaferri P, Tassone P (2018b) Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia 32:1948–1957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballabio A, Willard HF (1992) Mammalian X-chromosome inactivation and the XIST gene. Curr Opin Genet Dev 2:439–447

    CAS  PubMed  Google Scholar 

  • Baltz A, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690

    CAS  PubMed  Google Scholar 

  • Beckmann B, Horos R, Fischer B, Castello A, Eichelbaum K, Alleaume A, Schwarzl T, Curk T, Foehr S, Huber W et al (2015) The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun:6

  • Beckmann B, Castello A, Medenbach J (2016) The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Archiv-Eur J Physiol 468:1029–1040

    CAS  Google Scholar 

  • Behlke M (2016) Mini-review on current strategies to knockdown long non-coding RNAs. J Rare Dis Res Treat 1:66–70

    Google Scholar 

  • Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, Chang Y, Li JB, Senaratne TN, Williams BR et al (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A 109:21301–21306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett CF (2019) Therapeutic antisense oligonucleotides are coming of age. Annu Rev Med 70:307–321

    CAS  PubMed  Google Scholar 

  • Bersani F, Lee E, Kharchenko PV, Xu AW, Liu M, Xega K, MacKenzie OC, Brannigan BW, Wittner BS, Jung H et al (2015) Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. Proc Natl Acad Sci U S A 112:15148–15153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bevilacqua PC, Ritchey LE, Su Z, Assmann SM (2016) Genome-wide analysis of RNA secondary structure. Annu Rev Genet 50:235–266

    CAS  PubMed  Google Scholar 

  • Biamonti G, Vourc'h C (2010) Nuclear stress bodies. Cold Spring Harb Perspect Biol 2:a000695

    PubMed  PubMed Central  Google Scholar 

  • Biscotti MA, Canapa A, Forconi M, Olmo E, Barucca M (2015) Transcription of tandemly repetitive DNA: functional roles. Chromosom Res 23:463–477

    CAS  Google Scholar 

  • Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186:637–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17:661–678

    CAS  PubMed  Google Scholar 

  • Borsani G, Tonlorenzi R, Simmler MC, Dandolo L, Arnaud D, Capra V, Grompe M, Pizzuti A, Muzny D, Lawrence C, Willard HF, Avner P, Ballabio A (1991) Characterization of a murine gene expressed from the inactive X chromosome. Nature 351:325–329

    CAS  PubMed  Google Scholar 

  • Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci U S A 103:8709–8714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brockdorff N, Ashworth A, Kay GF, Cooper P, Smith S, McCabe VM, Norris DP, Penny GD, Patel D, Rastan S (1991) Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351:329–331

    CAS  PubMed  Google Scholar 

  • Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991a) A gene from the region of the human X inactivation Centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44

    CAS  PubMed  Google Scholar 

  • Brown CJ, Lafreniere RG, Powers VE, Sebastio G, Ballabio A, Pettigrew AL, Ledbetter DH, Levy E, Craig IW, Willard HF (1991b) Localization of the X inactivation Centre on the human X chromosome in Xq13. Nature 349:82–84

    CAS  PubMed  Google Scholar 

  • Brown J, Hendrich BD, Rupert JL (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:16

    Google Scholar 

  • Brückmann NH, Pedersen CB, Ditzel HJ, Gjerstorff MF (2018) Epigenetic reprogramming of pericentromeric satellite DNA in premalignant and malignant lesions. Mol Cancer Res 16:417–427

    PubMed  Google Scholar 

  • Buchwalow I, Samoilova V, Boecker W, Tiemann M (2018) Multiple immunolabeling with antibodies from the same host species in combination with tyramide signal amplification. Acta Histochem 120:405–411

    CAS  PubMed  Google Scholar 

  • Byron M, Hall LL, Lawrence JB (2013) A multifaceted FISH approach to study endogenous RNAs and DNAs in native nuclear and cell structures. Curr Protoc Hum Genet chapter 4, unit 4.15

  • Calabrese JM, Sun W, Song L, Mugford JW, Williams L, Yee D, Starmer J, Mieczkowski P, Crawford GE, Magnuson T (2012) Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151:951–963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carone DM, Lawrence JB (2013) Heterochromatin instability in cancer: from the Barr body to satellites and the nuclear periphery. Semin Cancer Biol 23:99–108

    CAS  PubMed  Google Scholar 

  • Carone DM, Zhang C, Hall LE, Obergfell C, Carone BR, O'Neill MJ, O'Neill RJ (2013) Hypermorphic expression of centromeric retroelement-encoded small RNAs impairs CENP-A loading. Chromosom Res 21:49–62

    CAS  Google Scholar 

  • Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann B, Strein C, Davey N, Humphreys D, Preiss T, Steinmetz L, Krijgsveld J, Hentze MW (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406

    CAS  PubMed  Google Scholar 

  • Castello A, Fischer B, Frese C, Horos R, Alleaume A, Foehr S, Curk T, Krijgsveld J, Hentze M (2016) Comprehensive identification of RNA-binding domains in human cells. Mol Cell 63:696–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerase A, Pintacuda G, Tattermusch A, Avner P (2015) Xist localization and function: new insights from multiple levels. Genome Biol 16:166

    PubMed  PubMed Central  Google Scholar 

  • Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KH, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci U S A 109:1979–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumeil J, Le Baccon P, Wutz A, Heard E (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20:2223–2237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35:467–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S, Park C, Kim KE, Kim KK (2017) An in vitro technique to identify the RNA binding-site sequences for RNA-binding proteins. Biotechniques 63:28–33

    CAS  PubMed  Google Scholar 

  • Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M, Avner P, Wutz A, Barillot E, Greally JM, Voinnet O, Heard E (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141:956–969

    CAS  PubMed  Google Scholar 

  • Chu C, Zhang Q, da Rocha S, Flynn R, Bharadwaj M, Calabrese J, Magnuson T, Heard E, Chang H (2015) Systematic discovery of Xist RNA binding proteins. Cell 161:404–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clemson CM (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:259–275

    CAS  PubMed  Google Scholar 

  • Clemson CM, Chow JC, Brown CJ, Lawrence JB (1998) Stabilization and localization of Xist RNA are controlled by separate mechanisms and are not sufficient for X inactivation. J Cell Biol 142:13–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clemson CM, Hall LL, Byron M, McNeil J, Lawrence JB (2006) The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci U S A 103:7688–7693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook KB, Vembu S, Ha KCH, Zheng H, Laverty KU, Hughes TR, Ray D, Morris QD (2017) RNAcompete-S: combined RNA sequence/structure preferences for RNA binding proteins derived from a single-step in vitro selection. Methods 126:18–28

    CAS  PubMed  Google Scholar 

  • Darzynkiewicz Z, Traganos F, Zhao H, Halicka HD, Li J (2011) Cytometry of DNA replication and RNA synthesis: historical perspective and recent advances based on “click chemistry”. Cytometry A 79:328–337

    PubMed  PubMed Central  Google Scholar 

  • Ding Y, Kwok CK, Tang Y, Bevilacqua PC, Assmann SM (2015) Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat Protoc 10:1050–1066

    CAS  PubMed  Google Scholar 

  • Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drino A, Schaefer MR (2018) RNAs, phase separation, and membrane-less organelles: are post-transcriptional modifications modulating organelle dynamics? Bioessays 40:e1800085

    PubMed  Google Scholar 

  • Duthie SM, Nesterova TB, Formstone EJ, Keohane AM, Turner BM, Zakian SM, Brockdorff N (1999) Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Hum Mol Genet 8:195–204

    CAS  PubMed  Google Scholar 

  • Dyer KA, Canfield TK, Gartler SM (1989) Molecular cytological differentiation of active from inactive X domains in interphase: implications for X chromosome inactivation. Cytogenet Cell Genet 50:116–120

    CAS  PubMed  Google Scholar 

  • Eminaga S, Teekakirikul P, Seidman CE, Seidman JG (2016) Detection of cell proliferation markers by immunofluorescence staining and microscopy imaging in paraffin-embedded tissue sections. Curr Protoc Mol Biol 115:14.25.1–14.25.14

    Google Scholar 

  • Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973–1237973

    PubMed  PubMed Central  Google Scholar 

  • Engreitz JM, Sirokman K, McDonel P, Shishkin AA, Surka C, Russell P, Grossman SR, Chow AY, Guttman M, Lander ES (2014) RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159:188–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escamilla-Del-Arenal M, da Rocha ST, Heard E (2011) Evolutionary diversity and developmental regulation of X-chromosome inactivation. Hum Genet 130:307–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang R, Moss WN, Rutenberg-Schoenberg M, Simon MD (2015) Probing Xist RNA structure in cells using targeted structure-Seq. PLoS Genet 11:e1005668

    PubMed  PubMed Central  Google Scholar 

  • Favre A, Saintomé C, Fourrey JL, Clivio P, Laugâa P (1998) Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions. J Photochem Photobiol B 42:109–124

    CAS  PubMed  Google Scholar 

  • Ferri F, Bouzinba-Segard H, Velasco G, Hubé F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37:5071–5080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fox AH, Lamond AI (2010) Paraspeckles. Cold Spring Harb Perspect Biol 2:a000687–a000687

    PubMed  PubMed Central  Google Scholar 

  • Fox AH, Lam YW, Leung AK, Lyon CE, Andersen J, Mann M, Lamond AI (2002) Paraspeckles: a novel nuclear domain. Curr Biol 12:13–25

    CAS  PubMed  Google Scholar 

  • Fox AH, Nakagawa S, Hirose T, Bond CS (2018) Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci 43:124–135

    CAS  PubMed  Google Scholar 

  • Friedersdorf M, Keene J (2014) Advancing the functional utility of PAR-CLIP by quantifying background binding to mRNAs and lncRNAs. Genome Biol 15

  • Galbraith CG, Galbraith JA (2011) Super-resolution microscopy at a glance. J Cell Sci 124:1607–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 63:378–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galupa R, Heard E (2018) X-chromosome inactivation: a crossroads between chromosome architecture and gene regulation. Annu Rev Genet 52:535–566

    CAS  PubMed  Google Scholar 

  • Garrido-Ramos MA (2017) Satellite DNA: an evolving topic. Genes (Basel) 8

  • Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845

    CAS  PubMed  Google Scholar 

  • Goenka A, Sengupta S, Pandey R, Parihar R, Mohanta GC, Mukerji M, Ganesh S (2016) Human satellite-III non-coding RNAs modulate heat-shock-induced transcriptional repression. J Cell Sci 129:3541–3552

    CAS  PubMed  Google Scholar 

  • Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218:474–475

    CAS  PubMed  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagemeijer MC, Vonk AM, Monastyrska I, Rottier PJ, de Haan CA (2012) Visualizing coronavirus RNA synthesis in time by using click chemistry. J Virol 86:5808–5816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall LL, Lawrence JB (2003) The cell biology of a novel chromosomal RNA: chromosome painting by XIST/Xist RNA initiates a remodeling cascade. Semin Cell Dev Biol 14:369–378

    CAS  PubMed  Google Scholar 

  • Hall LE, Mitchell SE, O'Neill RJ (2012) Pericentric and centromeric transcription: a perfect balance required. Chromosom Res 20:535–546

    CAS  Google Scholar 

  • Hall LL, Byron M, Carone DM, Whitfield TW, Pouliot GP, Fischer A, Jones P, Lawrence JB (2017) Demethylated HSATII DNA and HSATII RNA foci sequester PRC1 and MeCP2 into cancer-specific nuclear bodies. Cell Rep 18:2943–2956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Nakagawa S (2010) The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev Cell 19:469–476

    CAS  PubMed  Google Scholar 

  • Haukenes G, Szilvay AM, Brokstad KA, Kanestrøm A, Kalland KH (1997) Labeling of RNA transcripts of eukaryotic cells in culture with BrUTP using a liposome transfection reagent (DOTAP). Biotechniques 22:308–312

    CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2019) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Google Scholar 

  • He S, Zhang H, Liu H, Zhu H (2015) LongTarget: a tool to predict lncRNA DNA-binding motifs and binding sites via Hoogsteen base-pairing analysis. Bioinformatics 31:178–186

    CAS  PubMed  Google Scholar 

  • He C, Sidoli S, Warneford-Thomson R, Tatomer D, Wilusz J, Garcia B, Bonasio R (2016) High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol Cell 64:416–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrickson D, Kelley D, Tenen D, Bernstein B, Rinn J (2016) Widespread RNA binding by chromatin-associated proteins. Genome Biol:17

  • Hennig S, Kong G, Mannen T, Sadowska A, Kobelke S, Blythe A, Knote G, Iyer K, Ho D, Newcombe E et al (2015) Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol 210:529–539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horisawa K (2014) Specific and quantitative labeling of biomolecules using click chemistry. Front Physiol 5:457

    PubMed  PubMed Central  Google Scholar 

  • Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8:39

    PubMed  PubMed Central  Google Scholar 

  • Ichida K, Suzuki K, Fukui T, Takayama Y, Kakizawa N, Watanabe F, Ishikawa H, Muto Y, Kato T, Saito M et al (2018) Overexpression of satellite alpha transcripts leads to chromosomal instability via segregation errors at specific chromosomes. Int J Oncol

  • Ideue T, Cho Y, Nishimura K, Tani T (2014) Involvement of satellite I noncoding RNA in regulation of chromosome segregation. Genes Cells 19:528–538

    CAS  PubMed  Google Scholar 

  • Jao CY, Salic A (2008) Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci U S A 105:15779–15784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvelin A, Noerenberg M, Davis I, Castello A (2016) The new (dis)order in RNA regulation. Cell Commun Signal 14

  • Jauvin D, Chrétien J, Pandey SK, Martineau L, Revillod L, Bassez G, Lachon A, McLeod AR, Gourdon G, Wheeler TM et al (2017) Targeting DMPK with antisense oligonucleotide improves muscle strength in Myotonic dystrophy type 1 mice. Mol Ther Nucleic Acids 7:465–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jégu T, Aeby E, Lee JT (2017) The X chromosome in space. Nat Rev Genet 18:377–389

    PubMed  Google Scholar 

  • Johnsson P, Lipovich L, Grandér D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840:1063–1071

    CAS  PubMed  Google Scholar 

  • Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc'h C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jonkers I, Monkhorst K, Rentmeester E, Grootegoed JA, Grosveld F, Gribnau J (2008) Xist RNA is confined to the nuclear territory of the silenced X chromosome throughout the cell cycle. Mol Cell Biol 28:5583–5594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kay F, Penny D, Ashworth A, Drockdorff N (1993) Expression of XIST during mouse development suggests a role in the initiation of X chromosome inactivation. Cell 72:12

    Google Scholar 

  • Kharas M, Lengner C, Al-Shahrour F, Bullinger L, Ball B, Zaidi S, Morgan K, Tam W, Paktinat M, Okabe R et al (2010) Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med 16:903–U101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klec C, Prinz F, Pichler M (2019) Involvement of the long noncoding RNA NEAT1 in carcinogenesis. Mol Oncol 13:46–60

    CAS  PubMed  Google Scholar 

  • Kolpa HJ, Fackelmayer FO, Lawrence JB (2016) SAF-A requirement in anchoring XIST RNA to chromatin varies in transformed and primary cells. Dev Cell 39:9–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo CC, Hänzelmann S, Sentürk Cetin N, Frank S, Zajzon B, Derks JP, Akhade VS, Ahuja G, Kanduri C, Grummt I et al (2019) Detection of RNA-DNA binding sites in long noncoding RNAs. Nucleic Acids Res 47:e32

    PubMed  PubMed Central  Google Scholar 

  • Lambert N, Robertson A, Jangi M, McGeary S, Sharp PA, Burge CB (2014) RNA bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol Cell 54:887–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence JB, Singer RH, Marselle LM (1989) Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57:493–502

    CAS  PubMed  Google Scholar 

  • Lee FCY, Ule J (2018) Advances in CLIP Technologies for studies of protein-RNA interactions. Mol Cell 69:354–369

    CAS  PubMed  Google Scholar 

  • Lee JT, Strauss WM, Dausman JA, Jaenisch R (1996) A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86:83–94

    CAS  PubMed  Google Scholar 

  • Lee YS, Shibata Y, Malhotra A, Dutta A (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23:2639–2649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lengronne A, Pasero P, Bensimon A, Schwob E (2001) Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains. Nucleic Acids Res 29:1433–1442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine AJ, Ting DT, Greenbaum BD (2016) P53 and the defenses against genome instability caused by transposons and repetitive elements. Bioessays 38:508–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G et al (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254

    PubMed  PubMed Central  Google Scholar 

  • Li R, Harvey AR, Hodgetts SI, Fox AH (2017) Functional dissection of NEAT1 using genome editing reveals substantial localization of the NEAT1_1 isoform outside paraspeckles. RNA 23:872–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO et al (2009) Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science 326:289–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Currie SL, Rosen MK (2017) Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J Biol Chem 292:19110–19120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Schmidt BF, Bruchez MP, McManus CJ (2018) Structural analyses of NEAT1 lncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Res 46:3742–3752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Li T, Song G, He Q, Yin Y, Lu J, Bi X, Wang K, Luo S, Chen Y, Yang Y, Sun BF, Yang YG, Wu J, Zhu H, Shen X (2019) Insight into novel RNA-binding activities via large-scale analysis of lncRNA-bound proteome and IDH1-bound transcriptome. Nucleic Acids Res 47:2244–2262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z (2018) PARIS: Psoralen analysis of RNA interactions and structures with high throughput and resolution. Methods Mol Biol vol. 1649

  • Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA, Robinson JT, Davidovich C, Gooding AR, Goodrich KJ, Mattick JS, Mesirov JP, Cech TR, Chang HY (2016) RNA duplex map in living cells reveals higher-order Transcriptome structure. Cell 165:1267–1279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maharana S, Wang J, Papadopoulos D, Richter D, Pozniakovsky A, Poser I, Bickle M, Rizk S, Guillen-Boixet J, Franzmann T et al (2018) RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360:918–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7:952–958

    CAS  PubMed  Google Scholar 

  • Maris C, Dominguez C, Allain F (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272:2118–2131

    CAS  PubMed  Google Scholar 

  • Mattout A, Cabianca DS, Gasser SM (2015) Chromatin states and nuclear organization in development — a view from the nuclear lamina. Genome Biol 16:1–15

    CAS  Google Scholar 

  • Maxfield Boumil R (2001) Forty years of decoding the silence in X-chromosome inactivation. Hum Mol Genet 10:2225–2232

    Google Scholar 

  • McCarrey JR, Dilworth DD (1992) Expression of Xist in mouse germ cells correlates with X-chromosome inactivation. Nat Genet 2:200–203

    CAS  PubMed  Google Scholar 

  • McCown PJ, Wang MC, Jaeger L, Brown JA (2019) Secondary structural model of human MALAT1 reveals multiple structure-function relationships. Int J Mol Sci 20

  • McHugh CA, Guttman M (2018) RAP-MS: a method to identify proteins that interact directly with a specific RNA molecule in cells. In: Gaspar I (ed) RNA detection: methods and protocols. Springer New York, New York, pp 473–488

    Google Scholar 

  • McHugh C, Chen C, Chow A, Surka C, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–23+

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon A, Rahman R, Jin H, Shen J, Fieldsend A, Luo W, Rosbash M (2016) TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165:742–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • McNulty SM, Sullivan BA (2018) Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosom Res 26:115–138

    CAS  Google Scholar 

  • McNulty SM, Sullivan LL, Sullivan BA (2017) Human centromeres produce chromosome-specific and Array-specific alpha satellite transcripts that are Complexed with CENP-A and CENP-C. Dev Cell 42:226–240 e6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merino E, Wilkinson K, Coughlan J, Weeks K (2005) RNA structure analysis at single nucleotide resolution by selective 2'-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231

    CAS  PubMed  Google Scholar 

  • Miga KH (2015) Completing the human genome: the progress and challenge of satellite DNA assembly. Chromosom Res 23:421–426

    CAS  Google Scholar 

  • Migeon BR (1994) X-chromosome inactivation: molecular mechanisms and genetic consequences. Trends Genet 10:230–235

    CAS  PubMed  Google Scholar 

  • Mir M, Bickmore W, Furlong EEM, Narlikar G (2019) Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase?

  • Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murthy UM, Rangarajan PN (2010) Identification of protein interaction regions of VINC/NEAT1/men epsilon RNA. FEBS Lett 584:1531–1535

    PubMed  Google Scholar 

  • Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T (2012) Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles: LncRNA processing for nuclear body architecture. EMBO J 31:4020–4034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Naganuma T, Shioi G, Hirose T (2011) Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol 193:31–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Yamazaki T, Hirose T (2018) Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu. Open Biol 8

  • Ng K, Daigle N, Bancaud A, Ohhata T, Humphreys P, Walker R, Ellenberg J, Wutz A (2011) A system for imaging the regulatory noncoding Xist RNA in living mouse embryonic stem cells. Mol Biol Cell 22:2634–2645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen T (2016) Mapping RNA-RNA interactome and RNA structure in vivo by MARIO. Nat Commun

  • Nguyen TC, Cao X, Yu P, Xiao S, Lu J, Biase FH, Sridhar B, Huang N, Zhang K, Zhong S (2016) Mapping RNA–RNA interactome and RNA structure in vivo by MARIO. Nat Commun 7:1–12

    Google Scholar 

  • Nguyen D, Lu Y, Choo Z, Chin C, Prieto C, Gourkanti S, Leslie C, Kharas M (2018) The RNA binding protein MSI2 has increased RNA binding activity in leukemic stem cells compared to normal hematopoietic stem cells. Blood:132

  • Nickerson JA, Krochmalnic G, Wan KM, Penman S (1989) Chromatin architecture and nuclear RNA. Proc Natl Acad Sci U S A 86:177–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26:182–190

    CAS  PubMed  Google Scholar 

  • Nozawa RS, Gilbert N (2019) RNA: nuclear glue for folding the genome. Trends Cell Biol 29:201–211

    CAS  PubMed  Google Scholar 

  • Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64:600–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park S-M (2014) Musashi-2 controls cell fate, lineage bias, and TGF-β signaling in HSCs. J Exp Med 211:71–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SM (2015) Musashi2 sustains the mixed-lineage leukemia–driven stem cell regulatory program. J Clin Investig 125:1286–1298

    PubMed  PubMed Central  Google Scholar 

  • Peattie DA, Gilbert W (1980) Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci U S A 77:4679–4682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pederson T (2011) The nucleus introduced. Cold Spring Harb Perspect Biol 3

  • Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137

    CAS  PubMed  Google Scholar 

  • Pintacuda G, Young AN, Cerase A (2017) Function by structure: spotlights on Xist long non-coding RNA. Front Mol Biosci 4

  • Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    CAS  PubMed  Google Scholar 

  • Popova VV, Kurshakova MM, Kopytova DV (2015) Methods to study the RNA-protein interactions. Mol Biol (Mosk) 49:472–481

    CAS  Google Scholar 

  • Poria DK, Ray PS (2017) RNA-protein UV-crosslinking assay. Bio Protoc 7

  • Protter DSW, Rao BS, Van Treeck B, Lin Y, Mizoue L, Rosen MK, Parker R (2018) Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Rep 22:1401–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, Lai MM, Shishkin AA, Bhat P, Takei Y et al (2018) Higher-order inter-chromosomal hubs Shape 3D genome Organization in the Nucleus. Cell 174:744–757 e24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rastan S, Robertson EJ (1985) X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J Embryol Exp Morphol 90:379–388

    CAS  PubMed  Google Scholar 

  • Rego A, Sinclair PB, Tao W, Kireev I, Belmont AS (2008) The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J Cell Sci 121:1119–1127

    CAS  PubMed  Google Scholar 

  • Richler C, Soreq H, Wahrman J (1992) X inactivation in mammalian testis is correlated with inactive X-specific transcription. Nat Genet 2:192–195

    CAS  PubMed  Google Scholar 

  • Rinn J, Chang H, Kornberg R (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81(81):145–166

    CAS  PubMed  Google Scholar 

  • Rošić S, Köhler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207:335–349

    PubMed  PubMed Central  Google Scholar 

  • Rudkin GT, Stollar BD (1977) High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 265:472–473

    CAS  PubMed  Google Scholar 

  • Sadoni N, Zink D (2004) Nascent RNA synthesis in the context of chromatin architecture. Chromosom Res 12:439–451

    CAS  Google Scholar 

  • Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarma K, Levasseur P, Aristarkhov A, Lee JT (2010) Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc Natl Acad Sci U S A 107:22196–22201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki YT, Ideue T, Sano M, Mituyama T, Hirose T (2009) MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci U S A 106:2525–2530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma E, Sterne-Weiler T, O'Hanlon D, Blencowe BJ (2016) Global mapping of human RNA-RNA interactions. Mol Cell 62:618–626

    CAS  PubMed  Google Scholar 

  • Siegfried N, Busan S, Rice G, Nelson J, Weeks K (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11:959–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sigal YM, Zhou R, Zhuang X (2018) Visualizing and discovering cellular structures with super-resolution microscopy. Science 361:880–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon M, Wang C, Kharchenko P, West J, Chapman B, Alekseyenko A, Borowsky M, Kuroda M, Kingston R (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci U S A 108:20497–20502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer RH, Ward DC (1982) Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog. Proc Natl Acad Sci U S A 79:7331–7335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J et al (2014) Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 7:8

    PubMed  PubMed Central  Google Scholar 

  • Smola M, Calabrese J, Weeks K (2015) Detection of RNA-protein interactions in living cells with SHAPE. Biochemistry 54:6867–6875

    CAS  PubMed  Google Scholar 

  • Smurova K, De Wulf P (2018) Centromere and pericentromere transcription: roles and regulation … in sickness and in health. Front Genet 9:674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spiniello M, Knoener RA, Steinbrink MI, Yang B, Cesnik AJ, Buxton KE, Scalf M, Jarrard DF, Smith LM (2018) HyPR-MS for multiplexed discovery of MALAT1, NEAT1, and NORAD lncRNA protein interactomes. J Proteome Res 17:3022–3038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan BA (2010) Optical mapping of protein-DNA complexes on chromatin fibers. Methods Mol Biol 659:99–115

    CAS  PubMed  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Hao Q, Prasanth KV (2018) Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet 34:142–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19:347–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunwoo H, Wu JY, Lee JT (2015) The Xist RNA-PRC2 complex at 20-nm resolution reveals a low Xist stoichiometry and suggests a hit-and-run mechanism in mouse cells. Proc Natl Acad Sci 112:E4216–E4225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunwoo H, Colognori D, Froberg JE, Jeon Y, Lee JT (2017) Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc Natl Acad Sci 114:10654–10659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tagarro I, Fernández-Peralta AM, González-Aguilera JJ (1994) Chromosomal localization of human satellites 2 and 3 by a FISH method using oligonucleotides as probes. Hum Genet 93:383–388

    CAS  PubMed  Google Scholar 

  • Talbert PB, Henikoff S (2018) Transcribing centromeres: noncoding RNAs and kinetochore assembly. Trends Genet 34:587–599

    CAS  PubMed  Google Scholar 

  • Tam J, Merino D (2015) Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J Neurochem 135:643–658

    CAS  PubMed  Google Scholar 

  • Teller K, Illner D, Thamm S, Casas-Delucchi CS, Versteeg R, Indemans M, Cremer T, Cremer M (2011) A top-down analysis of Xa- and Xi-territories reveals differences of higher order structure at ≥ 20 Mb genomic length scales. Nucleus 2:465–477

    PubMed  Google Scholar 

  • Thorn K (2016) A quick guide to light microscopy in cell biology. Mol Biol Cell 27:219–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tijerina P, Mohr S, Russell R (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2:2608–2623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, Contino G, Deshpande V, Iafrate AJ, Letovsky S, Rivera MN, Bardeesy N, Maheswaran S, Haber DA (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ule J, Jensen K, Mele A, Darnell R (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37:376–386

    CAS  PubMed  Google Scholar 

  • Valgardsdottir R, Chiodi I, Giordano M, Rossi A, Bazzini S, Ghigna C, Riva S, Biamonti G (2008) Transcription of satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res 36:423–434

    CAS  PubMed  Google Scholar 

  • Van Nostrand EL, Freese P, Pratt GA, Wang X, Wei X, Xiao R, Blue SM, Chen J-Y, Cody NAL, Dominguez D et al (2018) A large-scale binding and functional map of human RNA binding proteins. bioRxiv:179648

  • Vuzman D, Levy Y (2012) Intrinsically disordered regions as affinity tuners in protein-DNA interactions. Mol BioSyst 8:47–57

    CAS  PubMed  Google Scholar 

  • Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993) Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122:283–293

    CAS  PubMed  Google Scholar 

  • Wei X, Somanathan S, Samarabandu J, Berezney R (1999) Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 146:543–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weick E-M, Miska EA (2014) piRNAs: from biogenesis to function

  • West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI, Wang PI, Tolstorukov MY, Kingston RE (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55:791–802

    CAS  PubMed  PubMed Central  Google Scholar 

  • West JA, Mito M, Kurosaka S, Takumi T, Tanegashima C, Chujo T, Yanaka K, Kingston RE, Hirose T, Bond C, Fox A, Nakagawa S (2016) Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J Cell Biol 214:817–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30:167–174

    CAS  PubMed  Google Scholar 

  • Xiao R, Chen J, Liang Z, Luo D, Chen G, Lu Z, Chen Y, Zhou B, Li H, Du X et al (2019) Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell 178:107–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Rahman R, Rosbash M (2018) Mechanistic implications of enhanced editing by a HyperTRIBE RNA-binding protein. Rna 24:173–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Hirose T (2015) The building process of the functional paraspeckle with long non-coding RNAs. Front Biosci (Elite Ed) 7:1–41

    Google Scholar 

  • Yamazaki T, Souquere S, Chujo T, Kobelke S, Chong YS, Fox AH, Bond CS, Nakagawa S, Pierron G, Hirose T (2018) Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol Cell 70:1038–1053 e7

    CAS  PubMed  Google Scholar 

  • Yu K, Liu C, Kim BG, Lee DY (2015) Synthetic fusion protein design and applications. Biotechnol Adv 33:155–164

    CAS  PubMed  Google Scholar 

  • Zhang Z, Carmichael GG (2001) The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106:465–475

    CAS  PubMed  Google Scholar 

  • Zhang XO, Yin QF, Chen LL, Yang L (2014) Gene expression profiling of non-polyadenylated RNA-seq across species. Genom Data 2:237–241

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Elbaum-Garfinkle S, Langdon E, Taylor N, Occhipinti P, Bridges A, Brangwynne C, Gladfelter A (2015) RNA controls PolyQ protein phase transitions. Mol Cell 60:220–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zong X, Huang L, Tripathi V, Peralta R, Freier SM, Guo S, Prasanth KV (2015) Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides. Methods Mol Biol 1262:321–331

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by funding to DMC from the Charles E. Kaufman Foundation of the Pittsburgh Foundation.

Author information

Authors and Affiliations

Authors

Contributions

SMKA, AV, and DMC conceived and wrote the manuscript.

Corresponding author

Correspondence to Dawn M. Carone.

Additional information

Responsible Editor: Beth Sullivan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkipeddi, S.M.K., Velleca, A.J. & Carone, D.M. Probing the function of long noncoding RNAs in the nucleus. Chromosome Res 28, 87–110 (2020). https://doi.org/10.1007/s10577-019-09625-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-019-09625-x

Keywords

Navigation