Skip to main content

Advertisement

Log in

Deep Deconvolutional Residual Network Based Automatic Lung Nodule Segmentation

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Accurate and automatic lung nodule segmentation is of prime importance for the lung cancer analysis and its fundamental step in computer-aided diagnosis (CAD) systems. However, various types of nodule and visual similarity with its surrounding chest region make it challenging to develop lung nodule segmentation algorithm. In this paper, we proposed the Deep Deconvolutional Residual Network (DDRN) based approach for the lung nodule segmentation from the CT images. Our approach is based on two key insights. Proposed deep deconvolutional residual network trained end to end and captures the diverse variety of the nodules from the 2D set of the CT images. Summation-based long skip connection from convolutional to deconvolutional part of the network preserves the spatial information lost during the pooling operation and captures the full resolution features. The proposed method is evaluated on the publicly available Lung Image Database Consortium and Image Database Resource Initiative (LIDC/IDRI) dataset. Results indicate that our proposed method can successfully segment nodules and achieve the average Dice scores of 94.97%, and Jaccard index of 88.68%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lung Image Database Consortium - Imaging Database Resources Initiative LIDC-IDRI. http://imaging.nci.nih.gov/ncia/login.jsf

  2. Messay T, Hardie RC, Rogers SK: A new computationally efficient cad system for pulmonary nodule detection in ct imagery. Med Image Anal 14 (3): 390–406, 2010

    Article  PubMed  Google Scholar 

  3. Kubota T, Jerebko AK, Dewan M, Salganicoff M, Krishnan A: Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Med Image Anal 15 (1): 133–154, 2011

    Article  PubMed  Google Scholar 

  4. Lassen BC, Jacobs C, Kuhnigk JM, van Ginneken B, van Rikxoort EM: Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Phys Med Biol 60 (3): 1307–1323, 2015

    Article  CAS  PubMed  Google Scholar 

  5. Messay T, Hardie RC, Tuinstra TR: Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset. Med Image Anal 22 (1): 48–62, 2015

    Article  PubMed  Google Scholar 

  6. Wang S, Zhou M, Liu Z, Liu . Z, Gu D, Zang Y, Dong D, Gevaert O, Tian J: Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med Image Anal 40: 172–183, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  7. Roy R, Chakraborti T, Chowdhurya AS: A deep learning-shape driven level set synergism for pulmonary nodule segmentation. Pattern Recogn Lett 123: 31–38, 2019

    Article  Google Scholar 

  8. Shakibapour E, Cunha A, Aresta G, Mendonça AM, Campilho A: An unsupervised metaheuristic search approach for segmentation and volume measurement of pulmonary nodules in lung ct scans. Expert Syst Appl 119: 415–428, 2019

    Article  Google Scholar 

  9. Boykov Y, Kolmogorov V: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26 (9): 1124–1137, 2004

    Article  PubMed  Google Scholar 

  10. Chan TF, Vese LA: Active contours without edges. IEEE Trans Image Process 10 (2): 266–277, 2001

    Article  CAS  PubMed  Google Scholar 

  11. Ciresan D, Giusti A, Gambardella LM, Schmidhuber J, Bottou L: Deep neural networks segment neuronal membranes in electron microscopy images. In: (Pereira F, Burges CJC, Weinberger KQ, Eds.) Advances in neural information processing systems, vol 25. Curran Associates, Inc., 2012, pp 2843–2851

  12. Dehmeshki J, Amin H, Valdivieso M, Ye X: Segmentation of pulmonary nodules in thoracic ct scans: a region growing approach. IEEE Trans Med Imaging 27 (4): 467–480, 2008

    Article  CAS  PubMed  Google Scholar 

  13. Diciotti S, Picozzi G, Falchini M, Mascalchi M, Villari N, Valli G: 3dd segmentation algorithm of small lung nodules in spiral ct images. Trans Info Tech Biomed 12: 1, 2008

    Article  Google Scholar 

  14. Diederich S, Wormanns D, Semik M, Thomas M, Lenzen H, Roos N, Heindel W: Screening for early lung cancer with low-dose spiral ct: prevalence in 817 asymptomatic smokers 1. Radiology 222 (3): 773–781, 2002

    Article  PubMed  Google Scholar 

  15. Fakhry A, Zeng T, Ji S: Residual deconvolutional networks for brain electron microscopy image segmentation. IEEE Trans Med Imaging 36 (2): 447–456, 2017

    Article  PubMed  Google Scholar 

  16. Farag AA, Munim HEAE, Graham JH, Farag AA: A novel approach for lung nodules segmentation in chest ct using level sets. IEEE Trans Image Process 22 (12): 5202–5213, 2013

    Article  PubMed  Google Scholar 

  17. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512:03385

  18. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: The IEEE Conference on computer vision and pattern recognition (CVPR)

  19. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T: Caffe: convolutional architecture for fast feature embedding.. In: Proceedings of the 22Nd ACM international conference on multimedia, MM ’14. ACM, New York, 2014, pp 675–678

  20. Kalpathy-Cramer J, Zhao Bg, Goldgof D, Gu Y, Wang X, Yang H, Tan Y, Gillies R, Napel S: A comparison of lung nodule segmentation algorithms: methods and results from a multi-institutional study. J Digit Imaging 29 (4): 476–487, 2016

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kostis WJ, Reeves AP, Yankelevitz DF, Henschke CI: Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical ct images. IEEE Trans Med Imaging 22 (10): 1259–1274, 2003

    Article  PubMed  Google Scholar 

  22. Kuhnigk J, Dicken V, Bornemann L, Bakai A, Wormanns D, Krass S, Peitgen H: Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic ct scans. IEEE Trans Med Imaging 25 (4): 417–434, 2006

    Article  PubMed  Google Scholar 

  23. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL: Microsoft coco: common objects in context. In: (Fleet D, Pajdla T, Schiele B, Tuytelaars T, Eds.) Computer vision – ECCV 2014. Springer International Publishing, Cham, 2014, pp 740–755

    Chapter  Google Scholar 

  24. Mukherjee S, Huang X, Bhagalia RR: Lung nodule segmentation using deep learned prior based graph cut.. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), 2017, pp 1205–1208

  25. Mukhopadhyay S: A segmentation framework of pulmonary nodules in lung ct images. J Digit Imaging 29 (1): 86–103, Feb 2016

    Article  PubMed Central  Google Scholar 

  26. Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: The IEEE International conference on computer vision (ICCV)

  27. Ronneberger O, Fischer P, Brox T: U-net: convolutional networks for biomedical image segmentation. In: (Navab N, Hornegger J, Wells WM, Frangi AF, Eds.) Medical image computing and computer-assisted intervention – MICCAI 2015. Springer International Publishing, Cham, 2015, pp 234–241

    Google Scholar 

  28. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Li F-F: ImageNet large scale visual recognition challenge. Int J Comput Vis (IJCV) 115 (3): 211–252, 2015

    Article  Google Scholar 

  29. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2016. CA: A Cancer J Clinicians 66 (1): 7–30, 2016

    Google Scholar 

  30. Tan Y, Schwartz LH, Zhao B: Segmentation of lung lesions on ct scans using watershed, active contours, and Markov random field. Med Phys 40 (4): 043502, 2013

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the assistance and support provided by Center of Excellence in Signal and Image Processing, SGGS Institute of Engineering and Technology, Nanded, India.

Funding

This work is funded by Rajiv Gandhi Science and Technology Commission (RGSTC), Government of Maharashtra, India, grant number RGSTC/File-2015/DPP-153/CR-58.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Singadkar.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Ethical approval

This article does not contain any studies with human participants or animals performed by of the authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singadkar, G., Mahajan, A., Thakur, M. et al. Deep Deconvolutional Residual Network Based Automatic Lung Nodule Segmentation. J Digit Imaging 33, 678–684 (2020). https://doi.org/10.1007/s10278-019-00301-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-019-00301-4

Keywords

Navigation