Skip to main content
Log in

Stability Analysis of a Bulk–Surface Reaction Model for Membrane Protein Clustering

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Protein aggregation on the plasma membrane (PM) is of critical importance to many cellular processes such as cell adhesion, endocytosis, fibrillar conformation, and vesicle transport. Lateral diffusion of protein aggregates or clusters on the surface of the PM plays an important role in governing their heterogeneous surface distribution. However, the stability behavior of the surface distribution of protein aggregates remains poorly understood. Therefore, understanding the spatial patterns that can emerge on the PM solely through protein–protein interaction, lateral diffusion, and feedback is an important step toward a complete description of the mechanisms behind protein clustering on the cell surface. In this work, we investigate the pattern formation of a reaction–diffusion model that describes the dynamics of a system of ligand–receptor complexes. The purely diffusive ligand in the cytosol can bind receptors in the PM and the resultant ligand–receptor complexes not only diffuse laterally but can also form clusters resulting in different oligomers. Finally, the largest oligomers recruit ligands from the cytosol using positive feedback. From a methodological viewpoint, we provide theoretical estimates for diffusion-driven instabilities of the protein aggregates based on the Turing mechanism. Our main result is a threshold phenomenon, in which a sufficiently high recruitment of ligands promotes the input of new monomeric components and consequently drives the formation of a single-patch spatially heterogeneous steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel SM, Roose JP, Groves JT, Weiss A, Chakraborty AK (2012) The membrane environment can promote or suppress bistability in cell signaling networks. J Phys Chem B 116(11):3630–3640

    Google Scholar 

  • Achdou Y, Franchi B, Marcello N, Tesi MC (2013) A qualitative model for aggregation and diffusion of \(\beta \)-amyloid in Alzheimer’s disease. J Math Biol 67(6–7):1369–1392

    MathSciNet  MATH  Google Scholar 

  • Adam G, Delbrück M (1968) Reduction of dimensionality in biological diffusion processes. Struct Chem Mol Biol 198:198–215

    Google Scholar 

  • Albersheim P, Anderson-Prouty AJ (1975) Carbohydrates, proteins, cell surfaces, and the biochemistry of pathogenesis. Annu Rev Plant Physiol 26(1):31–52

    Google Scholar 

  • Alonso S, Baer M (2010) Phase separation and bistability in a three-dimensional model for protein domain formation at biomembranes. Phys Biol 7(4):046012

    Google Scholar 

  • Amestoy P, Buttari A, Duff I, Guermouche A, LExcellent JY, Uçar B (2011) Mumps. Encyclopedia of parallel computing, pp 1232–1238

  • Andreasen M, Lorenzen N, Otzen D (2015) Interactions between misfolded protein oligomers and membranes: a central topic in neurodegenerative diseases? Biochim et Biophys Acta-Biomembr 1848(9):1897–1907

    Google Scholar 

  • Anoop R, Ralf L (2018) Membranes as modulators of amyloid protein misfolding and target of toxicity. Biochim Biophys Acta Biomembr 1860(9):1863–1875

    Google Scholar 

  • Arosio P, Rima S, Lattuada M, Morbidelli M (2012) Population balance modeling of antibodies aggregation kinetics. J Phys Chem B 116(24):7066–7075

    Google Scholar 

  • Arosio P, Knowles TPJ, Linse S (2015) On the lag phase in amyloid fibril formation. Phys Chem Chem Phys 17(12):7606–7618

    Google Scholar 

  • Baisamy L, Jurisch N, Diviani D (2005) Leucine zipper-mediated homo-oligomerization regulates the Rho–GEF Activity of AKAP-Lbc. J Biol Chem 280(15):15405–15412

    Google Scholar 

  • Bentz J, Nir S (1981) Mass action kinetics and equilibria of reversible aggregation. J Chem Soc Faraday Trans 1 Phys Chem Condens Ph 77(6):1249–1275

    Google Scholar 

  • Berg HC (1977) E.M. Purcell physics of chemoreception. Biophys J 20:193–219

    Google Scholar 

  • Bertsch M, Franchi B, Marcello N, Tesi MC, Tosin A (2016) Alzheimer’s disease: a mathematical model for onset and progression. Math Med Biol J IMA 34(2):193–214

    MathSciNet  MATH  Google Scholar 

  • Beta C, Amselem G, Bodenschatz E (2008) A bistable mechanism for directional sensing. N J Phys 10(8):083015

    Google Scholar 

  • Burke SP, Schumann TEW (1928) Diffusion flames. Ind Eng Chem 20(10):998–1004

    Google Scholar 

  • Changeux J-P, Thiéry J, Tung Y, Kittel C (1967) On the cooperativity of biological membranes. Proc Natl Acad Sci U S A 57(2):335

    Google Scholar 

  • Chatani E, Yamamoto N (2018) Recent progress on understanding the mechanisms of amyloid nucleation. Biophys Rev 10(2):527–534

    Google Scholar 

  • Chen CP, Posy S, Ben-Shaul A, Shapiro L, Honig BH (2005) Specificity of cell–cell adhesion by classical cadherins: critical role for low-affinity dimerization through-strand swapping. Proc Natl Acad Sci 102(24):8531–8536

    Google Scholar 

  • Choquet D (2010) Fast AMPAR trafficking for a high-frequency synaptic transmission. Eur J Neurosci 32(2):250–260

    MathSciNet  Google Scholar 

  • Christensen SM, Tu H-L, Jun JE, Alvarez S, Triplet MG, Iwig JS, Yadav KK, Bar-Sagi D, Roose JP, Groves JT (2016) One-way membrane trafficking of sos in receptor-triggered ras activation. Nat Struct Mol Biol 23(9):838

    Google Scholar 

  • Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ (2012) From macroscopic measurements to microscopic mechanisms of protein aggregation. J Mol Biol 421(2–3):160–171

    Google Scholar 

  • Darnell JE, Lodish HF, Baltimore D et al (1990) Molecular cell biology, vol 2. Scientific American Books, New York

    Google Scholar 

  • Davide C, Leah E-K, Mackenzie John A, Stéphanie P, Anotida M (2018) A coupled bulk–surface model for cell polarisation. J Theor Biol 481:119–135

    MathSciNet  Google Scholar 

  • Denk J, Kretschmer S, Halatek J, Hartl C, Schwille P, Frey E (2018) MinE conformational switching confers robustness on self-organized Min protein patterns. Proc Natl Acad Sci 115(18):4553–4558

    Google Scholar 

  • Diegmiller R, Montanelli H, Muratov CB, Shvartsman SY (2018) Spherical caps in cell polarization. Biophys J 115(1):26–30

    Google Scholar 

  • Drake RL (1972) A general mathematical survey of the coagulation equation. Top Curr Aerosol Res (Part 2) 3(Part 2):201–376

    Google Scholar 

  • Erwin F, Jacob H, Simon K, Petra S (2018) Protein pattern formation. Physics of biological membranes. Springer, Berlin, pp 229–260

    Google Scholar 

  • Franchi B, Lorenzani S (2016) From a microscopic to a macroscopic model for Alzheimer disease: two-scale homogenization of the Smoluchowski equation in perforated domains. J Nonlinear Sci 26(3):717–753

    MathSciNet  MATH  Google Scholar 

  • Gallier Jean (2009) Notes on spherical harmonics and linear representations of lie groups. preprint

  • Gan Q, Salussolia CL, Wollmuth LP (2015) Assembly of AMPA receptors: mechanisms and regulation. The Journal of Physiology 593(Pt 1):39–48

    Google Scholar 

  • Getz MC, Nirody JA, Rangamani P (2018) Stability analysis in spatial modeling of cell signaling. Wiley Interdiscip Rev Syst Biol Med 10(1):e1395

    Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12(1):30–39

    MATH  Google Scholar 

  • Giese W, Eigel M, Westerheide S, Engwer C, Klipp E (2015) Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models. Phys Biol 12(6):066014

    Google Scholar 

  • Goehring NW, Chowdhury D, Hyman AA, Grill SW (2010) FRAP analysis of membrane-associated proteins: lateral diffusion and membrane-cytoplasmic exchange. Biophys J 99(8):2443–2452

    Google Scholar 

  • Goryachev AB, Pokhilko AV (2008) Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett 582(10):1437–1443

    Google Scholar 

  • Guidotti G (1972) The composition of biological membranes. Arch Intern Med 129(2):194–201

    Google Scholar 

  • Habchi J, Chia S, Galvagnion C, Michaels TCT, Bellaiche MMJ, Ruggeri FS, Sanguanini M, Idini I, Kumita JR, Sparr E, Linse S, Dobson CM, Knowles TPJ, Vendruscolo M (2018) Cholesterol catalyses \(\beta \)42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nat Chem 10(6):673–683

    Google Scholar 

  • Han S, Kollmer M, Markx D, Claus S, Walther P, Fändrich M (2017) Amyloid plaque structure and cell surface interactions of \(\beta \)-amyloid fibrils revealed by electron tomography. Sci Rep 7:43577

    Google Scholar 

  • Hashimoto K, Panchenko AR (2010) Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. Proc Natl Acad Sci 107(47):20352–20357

    Google Scholar 

  • Haugh JM, Lauffenburger DA (1997) Physical modulation of intracellular signaling processes by locational regulation. Biophys J 72(5):2014–2031

    Google Scholar 

  • Holmes BB, Diamond MI (2012) Cellular mechanisms of protein aggregate propagation. Curr Opin Neurol 25(6):721–726

    Google Scholar 

  • Ispolatov I (2005) Binding properties and evolution of homodimers in protein-protein interaction networks. Nucleic Acids Res 33(11):3629–3635

    Google Scholar 

  • Jain MK, Wagner RC (1988) Introduction to biological membranes. Wiley, New York

    Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1993) Seeding one-dimensional crystallization of amyloid: a pathogenic mechanism in alzheimer’s disease and scrapie? Cell 73(6):1055–1058

    Google Scholar 

  • Johannes L, Pezeshkian W, Ipsen JH, Shillcock JC (2018) Clustering on Membranes: fluctuations and More. Trends Cell Biol 28(5):405–415

    Google Scholar 

  • Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW (2012) The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol 421(2–3):185–203

    Google Scholar 

  • Kholodenko Boris N (2006) Cell-signalling dynamics in time and space. Nat Rev Mol cell Biol 7(3):165–176

    Google Scholar 

  • Khuc TP, Nicola Ernesto M, Goehring Nathan W, Vijay KK, Grill Stephan W (2014) Parameter-space topology of models for cell polarity. J Phys 16(6):065009

    Google Scholar 

  • Lao QZ, Kobrinsky E, Liu Z, Soldatov NM (2010) Oligomerization of \(\text{ Ca }_v\beta \) subunits is an essential correlate of Ca2+ channel activity. J Fed Am Soc Exp Biol 24(12):5013–5023

    Google Scholar 

  • Lemmon Mark A, Joseph S (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):211–225

    Google Scholar 

  • Lorent JH, Diaz-Rohrer B, Lin X, Spring K, Gorfe AA, Levental KR, Levental I (2017) Structural determinants and functional consequences of protein affinity for membrane rafts. Nat Commun 8(1):1219

    Google Scholar 

  • Madzvamuse A, Chung AHW, Venkataraman C (2015) Stability analysis and simulations of coupled bulk–surface reaction–diffusion systems. Proc R Soc A Math Phys Eng Sci 471(2175):20140546–20140546

    MathSciNet  MATH  Google Scholar 

  • Manor A, Shnerb NM (2006) Dynamical failure of Turing patterns. Europhys Lett 74(5):837

    MathSciNet  Google Scholar 

  • Marianayagam NJ, Sunde M, Matthews JM (2004) The power of two: protein dimerization in biology. Trends Biochem Sci 29(11):618–625

    Google Scholar 

  • McCloskey MA, Poo MM (1986) Rates of membrane-associated reactions: reduction of dimensionality revisited. J Cell Biol 102(1):88–96

    Google Scholar 

  • Meisl G, Kirkegaard JB, Arosio P, Michaels TCT, Vendruscolo M, Dobson CM, Linse S, Knowles TPJ (2016) Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat Protoc 11(2):252

    Google Scholar 

  • Mori Y, Jilkine A, Edelstein-Keshet L (2008) Wave-pinning and cell polarity from a bistable reaction–diffusion system. Biophys J 94(9):3684–3697

    Google Scholar 

  • Mori Y, Jilkine A, Edelstein-Keshet L (2011) Asymptotic and bifurcation analysis of wave-pinning in a reaction–diffusion model for cell polarization. SIAM J Appl Math 71(4):1401–1427

    MathSciNet  MATH  Google Scholar 

  • Muratcioglu S, Chavan TS, Freed BC, Jang H, Lyuba Khavrutskii R, Freed N, Dyba MA, Stefanisko K, Tarasov SG, Gursoy A et al (2015) GTP-dependent K-Ras dimerization. Structure 23(7):1325–1335

    Google Scholar 

  • Murray JD (1993) Mathematical biology, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Padmanabhan P, Martinez-Mairmol R, Xia D, Gotz J, Meunier FA (2019) Frontotemporal dementia mutant Tau promotes aberrant Fyn nanoclustering in hippocampal dendritic spines. eLife 8:e45040

    Google Scholar 

  • Porat-Shliom N, Milberg O, Masedunskas A, Weigert R (2013) Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 70(12):2099–2121

    Google Scholar 

  • Postma M, Bosgraaf L, Loovers HM, Van Haastert PJM (2004) Chemotaxis: signalling modules join hands at front and tail. EMBO Rep 5(1):35–40

    Google Scholar 

  • Rangamani P, Lipshtat A, Azeloglu EU, Calizo RC, Hu M, Ghassemi S, Hone J, Scarlata S, Neves SR, Iyengar R (2013) Decoding information in cell shape. Cell 154(6):1356–1369

    Google Scholar 

  • Rappel W-J, Edelstein-Keshet L (2017) Mechanisms of cell polarization. Curr Opin Syst Biol 3:43–53

    Google Scholar 

  • Rätz A (2015) Turing-type instabilities in bulk–surface reaction–diffusion systems. J Comput Appl Math 289:142–152

    MathSciNet  MATH  Google Scholar 

  • Rätz A, Röger M (2012) Turing instabilities in a mathematical model for signaling networks. J Math Biol 65(6–7):1215–1244

    MathSciNet  MATH  Google Scholar 

  • Rätz A, Röger M (2014) Symmetry breaking in a bulk-surface reaction–diffusion model for signalling networks. Nonlinearity 27(8):1805

    MathSciNet  MATH  Google Scholar 

  • Rosa C, Rocha Fernando A, Damas Ana M, Martins Pedro M (2012) A generic crystallization-like model that describes the kinetics of amyloid fibril formation. J Biol Chem 287(36):30585–30594

    Google Scholar 

  • Sarabipour S, Hristova K (2016) Mechanism of FGF receptor dimerization and activation. Nat Commun 7:10262

    Google Scholar 

  • Sarkar B, Das A, Maiti S (2013) Thermodynamically stable amyloid-\(\beta \) monomers have much lower membrane affinity than the small oligomers. Front Physiol 4:84

    Google Scholar 

  • Scott FH (2005) Elements of chemical reaction engineering, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Semplice M, Veglio A, Naldi G, Serini G, Gamba A (2012) A bistable model of cell polarity. PLoS ONE 7(2):e30977

    Google Scholar 

  • Sholpan A, Xiaoguang Y, Lee James C-M (2011) Impacts of membrane biophysics in Alzheimer’s disease: from amyloid precursor protein processing to \(\beta \) peptide-induced membrane changes. Int J Alzheimer’s Dis 17(2011):134971

    Google Scholar 

  • Silverman RA et al (1972) Special functions and their applications. Courier Corporation, North Chelmsford

    Google Scholar 

  • Sleno R, Hbert TE (2018) Chapter five—the dynamics of GPCR oligomerization and their functional consequences. In: Arun KS, (ed) International review of cell and molecular biology, vol 338 of G protein-coupled receptors: emerging paradigms in activation, signaling and regulation Part A, pp 141–171. Academic Press

  • Smoluchowski M (1918) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift für Physikalische Chemie 92(1):129–168

    Google Scholar 

  • Stephen S, Neil D (2018) Model reduction permits Turing instability analysis of arbitrary reaction–diffusion models. J R Soc Interface 15:213298

    Google Scholar 

  • Stillwell W (2013) An introduction to biological membranes: from bilayers to rafts. Newnes, Amsterdam

    Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos with applications to physics. Biology, chemistry and engineering, 1st edn. Westview Press, Routledge

  • Trong PK, Nicola EM, Goehring NW, Kumar KV, Grill SW (2014) Parameter-space topology of models for cell polarity. N J Phys 16(6):065009

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237(641):37–72

    MathSciNet  MATH  Google Scholar 

  • van Oosterom A (2006) The surface Laplacian operator of the potentials on a bounded volume conductor has a unique inverse. IEEE Trans Biomed Eng 53(7):1449–1450

    Google Scholar 

  • Yanyan C, Javier B (2019) A non-linear analysis of Turing pattern formation. PLoS ONE 14(8):1–9

    Google Scholar 

  • Yeagle L (2011) The structure of biological membranes. CRC Press, Boca Raton

    Google Scholar 

  • Zhang Y-J, Shi J-M, Bai C-J, Wang H, Li H-Y, Yi W, Ji S-R (2012) Intra-membrane oligomerization and extra-membrane oligomerization of amyloid-\(\beta \) peptide are competing processes as a result of distinct patterns of motif interplay. J Biol Chem 287(1):748–756

    Google Scholar 

  • Zidar M, Kuzman D, Ravnik M (2018) Characterisation of protein aggregation with the smoluchowski coagulation approach for use in biopharmaceuticals. Soft Matter 14(29):6001–6012

    Google Scholar 

Download references

Acknowledgements

This work was supported by Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) Grant FA9550-18-1-0051 to P. Rangamani. M. Holst was supported in part by NSF Awards DMS 1620366 and DMS 1345013. We also thank the Ph.D students Jennifer Fromm, Allen Leung, and Kiersten Scott from the Rangamani Lab for the comments and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmini Rangamani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3491 KB)

Supplementary material 2 (mp4 7775 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolerman, L.M., Getz, M., Smith, S.G.L. et al. Stability Analysis of a Bulk–Surface Reaction Model for Membrane Protein Clustering. Bull Math Biol 82, 30 (2020). https://doi.org/10.1007/s11538-020-00703-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00703-4

Keywords

Navigation