Skip to main content

Advertisement

Log in

Steam explosion (SE) and instant controlled pressure drop (DIC) as thermo-hydro-mechanical pretreatment methods for bioethanol production

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass can be considered as one of the largest sources for the production of renewable biofuels (bioethanol). It involves an enzymatic treatment capable of ensuring the depolymerization of cellulose into fermentable sugars, followed by the production of ethanol by appropriate bacteriological fermentation. Proper destruction of the compact natural structure of the biomass would allow an interesting intensification of the operation. Among the most prominent technical approaches, the steam explosion (SE) is the most famous. However, this high pressure-high temperature process implies too high energy consumption while leading to the generation of many non-fermentable molecules. In recent years, many studies have proposed the use of the Instant Controlled Pressure-Drop (DIC) texturing pretreatment as an effective alternative to SE for ethanol production. Therefore, in this manuscript, we propose to compare and discuss the fundamental principles and experimental results of these two operations, as presented in the relevant literature.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jin Y, Fang Y, Zhang G, Zhou L, Zhao H (2012) Comparison of ethanol pro-duction performance in 10 varieties of sweet potato at different growth stages. Acta Oecol 44:33–37s

    Article  Google Scholar 

  2. Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Roleand significance of beta-glucosidases in the hydrolysis of cellulose for bioethanolproduction. Bioresour Technol 127:500–507

    Article  CAS  PubMed  Google Scholar 

  3. Weerachanchai P, Leong SSJ, Chang MW, Ching CB, Lee JM (2012) Improvement of biomass properties by pretreatment with ionic liquids for bio-conversion process. Bioresour Technol 111:453–459

    Article  CAS  PubMed  Google Scholar 

  4. Ruffell J, Levie B, Helle S, Duff S (2010) Pretreatment and enzymatic hydrolysis of recovered fibre for ethanol production. Bioresour Technol 101:2267–2272

    Article  CAS  PubMed  Google Scholar 

  5. Ruiz HA, Silva DP, Ruzene DS, Lima LF, Vicente AA, Teixeira JA (2012) Bioetanol production from hydrothermal pretreated weat straw by aflocculating Saccharomyces cerevisiae strain effect of process conditions. Fuel 95:528–536

    Article  CAS  Google Scholar 

  6. Govumoni SP, Koti S, Kothagouni SY, Venkateshwar S, Linga VR (2013) Evaluation of pretreatment methods for enzymatic saccharification of wheatstraw for bioethanol production. Carbohydr Polym 91:646–650

    Article  CAS  PubMed  Google Scholar 

  7. Mosier N, Wyman CE, Dale BD, Elander RT, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  8. Joshi B, Bhatt MR, Sharma D, Joshi J, Malla R, Sreerama L (2011) Lignocellulosic ethanol production: current practices and recent developments. Biotechnol Mol Biol Rev 6:172–182

    CAS  Google Scholar 

  9. Xiao W, Yin W, Xia S, Ma P (2012) The study of factors affecting the enzymatichydrolysis of cellulose after ionic liquid pretreatment. Carbohydr Polym 87:2019–2023

    Article  CAS  Google Scholar 

  10. Thulluri C, Goluguri BR, Konakalla R, Shetty PR, Addepally U (2013) Theeffect of assorted pretreatments on cellulose of selected vegetable waste andenzymatic hydrolysis. Biomass Bioenergy 49:205–213

    Article  CAS  Google Scholar 

  11. Arslan Y, Eken-Saracoglu N (2010) Effects of pretreatment methods for hazel-nut shell hydrolysate fermentation with Pichia stipitis to ethanol. Bioresour Technol 101:8664–8670

    Article  CAS  PubMed  Google Scholar 

  12. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conversat Manag 52:858–875

    Article  CAS  Google Scholar 

  13. Chacha N, Toven K, Mtui G, Katima J, Mrema G (2011) Steam pretreatment ofPine (Pinus patula) wood residue for the production of reducing sugars. Cell Chem Technol 45:495–501

    CAS  Google Scholar 

  14. Chen WH, Pen BL, Yu CT, Hwang WS (2011) Pretreatment efficiency and structural characterization of rice straw by an integrated processof dilute-acid and steam explosion for bioethanol. Bioresour Technol 102:2916–2924

    Article  CAS  PubMed  Google Scholar 

  15. Yu Y, Feng Y, Xu C, Liu J, Li D (2011) Onsite bio-detoxification of steam-exploded corn stover for cellulosic ethanol production. Bioresour Technol 102:5123–5128

    Article  CAS  PubMed  Google Scholar 

  16. Martin-Sampedro R, Eugenio ME, Garcia JC, Lopez F, Villar JC, Diaz MJ (2012) Steam explosion and enzymatic pretreatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biomass Bioenerg 42:97–106

    Article  CAS  Google Scholar 

  17. Balat M, Balat H, Cahide O (2007) Progress in bioethanol processing. Prog Energy Combusts Sci 10:1–23

    Google Scholar 

  18. Zhang Y, Lu C, Tang J, Yu X, Lu J, Meng Q et al (2011) Enhanced saccharification of steam explosion pretreated corn stover by the supplementationof thermoacidophilic-glucosidase from a newly isolated strain, Toiypocladium cylindrosporum SYZX4. Afr J Microbiol Res 5:2413–2421

    CAS  Google Scholar 

  19. Shamsudin S, Shah UKM, Zainudin H, Abd-Aziz S, Kamal SMM, Shirai Y et al (2012) Effect of steam pretreatment on oil palm empty fruit bunch for theproduction of sugars. Biomass Bioenergy 36:280–288

    Article  CAS  Google Scholar 

  20. Tomas-Pejo E, Oliva JM, Ballesteros M (2008) Realistic approach for full-scalebioethanol production from lignocellulose: a review. J Sci Ind Res 67:8874–8884

    Google Scholar 

  21. Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:1–19

    Article  CAS  Google Scholar 

  22. Kabel MA, Bos G, Zeevalking J, Voragen AG, Schols HA (2007) Effectof pretreatment severity on xylan solubility and enzymatic breakdown of theremaining cellulose from wheat straw. Bioresour Technol 98:2034–2042

    Article  CAS  PubMed  Google Scholar 

  23. Jacquet N, Quievy N, Vanderghem C, Janas S, Blecker C, Wathelet B et al (2011) Influence of steam explosion on the thermal stability of cellulose fibers. Polym Degrad Stab 96:1582–1588

    Article  CAS  Google Scholar 

  24. Weil JR, Sarikaya A, Rau SL, Goetz J, Ladisch CM, Brewer M et al (1997) Pretreatment of yellow poplar sawdust by pressure cooking in water. Appl Biochem Biotechnol 68:21–40

    Article  CAS  Google Scholar 

  25. Vaithanomsat P, Chuichulcherm S, Apiwatanapiwat W (2009) Bioethanol pro-duction from enzymatically saccharified sunflower stalks using steam explosionas pretreatment. World Acad Scis Eng Technol 49:140–143

    Google Scholar 

  26. Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. BioresourTechnol 98:2503–2510

    Article  CAS  Google Scholar 

  27. Pan X, Zhang X, Gregg DJ, Saddler JN (2004) Enhanced enzymatic hydrolysis of steamexploded Douglas fir wood by alkali-oxygen post treatment. Appl Biochem Biotechnol 113:1103–1114

    Article  PubMed  Google Scholar 

  28. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanolproduction: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  29. Soderstrom J, Pilcher L, Calbe M, Zacchi G (2003) Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenerg 24:475–486

    Article  CAS  Google Scholar 

  30. Allaf K, Louka N, Bouvier JM, Parent FM (1996) Method for processing phytogenic materials to change their texture, installation for the achievement of such a process and resulting materials. French Patent, published under the n° F2708419; 1995. Europe, USA, Brazil, and Japan, Patent published on 16 February 1995 n° WO95/04466. Germany, Austria, Belgium, Denmark, Spain, France, Greece, Ireland, Italy, Liechtenstein, Luxembourg, Monaco, Netherlands, Portugal, United Kingdom, Sweden, Switzerland, Patent published on 12 May 1999 Delivering number: EP 0 776 164 B1. US patent, Delivering number: 5.855.941 on 5 January 1999. Brazil Patent application n° 9407183.7 of 2 August 1996.

  31. Mounir S, Allaf T, Berka B, Hassani A, Allaf K (2014) Instant controlled pressure drop technology: from a new fundamental approach of instantaneous transitory thermodynamics to large industrial applications on high performance–high controlled quality unit operations. CR Chim 17:261–267

    Article  CAS  Google Scholar 

  32. Tellez-Perez C, Sabah MM, Montejano-Gaita JG, Sobolik V, Martinez CA, Allaf K (2012) Impact of instant controlled pressure drop treatment on dehydration and rehydration kinetics of green Moroccan pepper (Capsicum annuum). Procedia Eng 42:978–1003

    Article  CAS  Google Scholar 

  33. Mounir S, Allaf T, Mujumdar AS, Allaf K (2012) Swell drying: coupling instant controlled pressure drop DIC to standard convection drying processes to intensify transfer phenomena and improve quality an overview. Drying Technol 30:1508–1531

    Article  CAS  Google Scholar 

  34. Albitar N, Mounir S, Besombes C, Allaf K (2011) Improving the drying of onion using the instant controlled pressure drop technology. Drying Technol 29:9

    Article  CAS  Google Scholar 

  35. Amor BB, Lamy C, Andre P, Allaf K (2008) Effect of instant controlled pressure drop treatments on the oligosaccharides extractability and microstructure of Tephrosiapurpurea seeds. J Chromatogr A 1213:118–124

    Article  PubMed  CAS  Google Scholar 

  36. Louka N, Allaf K (2004) Expansion ratio and color improvement of dried vegetables texturized by a new process ‘‘Controlled Sudden Decompression to the vacuum’’ application to potatoes, carrots and onions. J Food Eng 65:233–243

    Article  Google Scholar 

  37. Louka N, Allaf K (2002) New process for texturing partially dehydrated biological products using controlled sudden decompression to the vacuum: application on potatoes. J Food Sci 67:3033–3038

    Article  CAS  Google Scholar 

  38. Haddad MA, Mounir S, Sobolik V, Allaf K (2008) Fruits and vegetables drying combining hot air, DIC technology and microwaves. Int J Food Eng 4:9

    Article  Google Scholar 

  39. Kristiawan M, Sobolik V, Allaf K (2004) Etude comparative d'extraction de l'huile essentielle des fleurs d'ylang-ylang. In: Proceedings 16èmes rencontres scientifiques et technologiques des industries alimentaires et biologiques. AGORAL-Montpellier, France.

  40. Besombes C, Albitar N, Allaf K, Barkat O (2007) The Instantaneous Controlled Pressure Drop (DIC) for the extraction of essential oils from: oregano and jasmine. In: Proceedings 38th International Symposium on Essential Oils, Graz-Autriche pp: 44.

  41. Berka-Zougali B, Besombes C, Allaf T, Allaf K (2014) Extraction of essential oils and volatile molecules. In: Allaf T, Allaf K (eds) Instant controlled pressure drop (D.I.C.) in food processing. Food engineering series. Springer, New Yorks

    Google Scholar 

  42. Kamal I, Besombes C, Allaf K (2014) One-step processes for in situ transesterification to biodiesel and lutein extraction from microalgae Phaeodactylum using instant controlled pressure drop (DIC). Green Process Synth 3:431–440

    CAS  Google Scholar 

  43. Haddad MA, Allaf K (2007) A study of the impact of instantaneous controlled pressure drop on the trypsin inhibitors of soybean. J Food Eng 79:353–357

    Article  CAS  Google Scholar 

  44. Larsson S, Reimann A, Nilvebrant NO, Jönsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolysates of spruce. Appl Biochem Biotechnol 77:91–103

    Article  Google Scholar 

  45. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellolosic hydrolysates I: inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  46. Ballesteros M, Ballesteros C, Cara F, Sáez E, Castro P, Manzanares MJ (2011) Negro JM: Effect of water extraction on sugars recovery from steam exploded olive tree pruning. Bioresour Technol 102:6611–6616

    Article  CAS  PubMed  Google Scholar 

  47. Smichi N, Messaoudi Y, Gelicus A, Allaf K, Gargouri M (2015) Optimization of DIC technology as a pretreatment stage for enzymatic saccharification of Retamareatam. Fuel Process Technol 138:344–354

    Article  CAS  Google Scholar 

  48. Sarip H, Allaf K, Mohd MA (2011) Pure cellulose conversion to glucose with instant pressure drop (DIC) technology. IJEIT 8:36–41

    Google Scholar 

  49. Carrasco C, Baudel H, Peñarrieta M, Solano C, Tejeda L, Roslander C, Galbe M, Lidén G (2011) Steam pretreatment and fermentation of the straw material “Paja Brava” using simultaneous saccharification and co-fermentation. J Biosci Bioeng 111:167–174

    Article  CAS  PubMed  Google Scholar 

  50. Chang J, Cheng W, Yin Q, Zuo R, Song A, Zheng Q, Wang P, Wang X, Liu J (2013) Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover. Bioresour Technol 104:587–592

    Article  CAS  Google Scholar 

  51. WoodIP EA, Collins SRA, Wilson D, Bancroft I, Waldron KW (2014) Steam explosion of oilseed rape straw: establishing key determinants of saccharification efficiency. Bioresour Technol 162:175–183

    Article  CAS  Google Scholar 

  52. Jung CD, Yu JH, Eom IY, Hong KS (2013) Sugar yields from sunflower stalks treated by hydrothermolysis and subsequent enzymatic hydrolysis. Bioresour Technol 138:1–7

    Article  CAS  PubMed  Google Scholar 

  53. Yamashita Y, Sasaki C, Nakamura Y (2010) Effective enzyme saccharification and ethanol production from Japanese cedar using various pretreatment methods. J Biosci Bioeng 110:79–86

    Article  CAS  PubMed  Google Scholar 

  54. Wang K, Xiong X, Chen J, Chen L, Su X, Liu Y (2012) Comparison of gamma irradiation and steam explosion pretreatment for ethanol production from agricultural residues. Biomass Bioenerg 46:301–308

    Article  CAS  Google Scholar 

  55. Ruiz E, Cara C, Manzanares P, Ballesteros M, Castro E (2008) Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzym Microb Technol 42:160–166

    Article  CAS  Google Scholar 

  56. Messaoudi Y, Smichi N, Allaf T, Allaf K, Gargouri M (2015) Effect of instant controlled pressure drop pretreatment of lignocellulosic wastes on enzymatic saccharification and ethanol production. Ind Crops Prod 77:910–919

    Article  CAS  Google Scholar 

  57. Dale BE, Moreira MJ (1982) A freeze-explosion technique for increasing cellulosehydrolysis. Biotechnol Bioeng Symp 12:31–43

    CAS  Google Scholar 

  58. Linde M, Jakobsson EL, Galbe M, Zacchi G (2008) Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 32:326–332

    Article  CAS  Google Scholar 

  59. Jacquet N, Maniet G, Vanderghem C, Delvigne F, Richel A (2015) Application of steam explosion as pretreatment on lignocellulosic material: a review. Ind Eng Chem Res 54:2593–2598

    Article  CAS  Google Scholar 

  60. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F (2004) Subsequent enzymatic hydrolysis and SSF. Biotechnol Prog 20:200–206

    Article  CAS  PubMed  Google Scholar 

  61. Li B, Yang W, Nie Y, Kang F, Goff HD, Cui SW (2019) Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocoll 94:48–56

    Article  CAS  Google Scholar 

  62. Allaf K, Besombes C, Amami E, Allaf T, Arun SM, Mounir S (2019) Drying and instant controlled pressure drop swell drying: towards high-quality dried foods and starch-free snacks. In: Arun SM, Hong-Wei X (eds) Chapter 2 in advanced drying technologies for foods. CRC Press, London

    Google Scholar 

  63. Karim A, Sabah M, Mohamed N, Tamara A, Hanintsoa F, Arun SM (2019) Intermittent drying. Advanced drying technologies for foods. CRC Press, London

    Google Scholar 

  64. Mounir S, Allaf T, Berka B, Hassani A, Allaf K (2014) Instant controlled pressure drop technology: from a new fundamental approach of instantaneous transitory thermodynamics to large industrial applications. Comptes Rendus Chimie. Elsevier, Amstredam

    Google Scholar 

  65. Sarip H, Hossain S, Azemi MMN, Allaf K (2016) A review of the thermal pretreatment of lignocellulosic biomass towards glucose production: autohydrolysis with DIC technology. BioResources 11:4

    Article  CAS  Google Scholar 

  66. Kararli TT, Hurlbut JB (1990) Needham, TE:Glass-rubber transitions of cellulosic polymers by dynamic mechanical analysis. J Pharm Sci 79:845–848

    Article  CAS  PubMed  Google Scholar 

  67. Allaf T, Allaf K (2014) Instant controlled pressure drop (D.I.C.) sns. In: Gustavo V, Canovas C (eds) Food engineering series. Washington State University, Washington

    Google Scholar 

  68. Mounir S, Allaf T, Berka B, Hassani A, Allaf K (2014) Instant controlled pressure drop technology: from a new fundamental approach of instantaneous transitory thermodynamics to large industrial applications on high performance–high controlledquality unit operations. CR Chim 17:261–267

    Article  CAS  Google Scholar 

  69. Kamdem I, Tomekpe K, Thonart P (2011) Production potentielle de bioéthanol, de biométhane et de pellets à partir des déchets de biomasse lignocellulosique du bananier (Musa spp.) au Cameroun. Biotechnol Agron Soc Environ 15:471–483

    Google Scholar 

  70. Hassen DH, Kasraoui M, Karra C (2014) Le bois industriel en Tunisie : aggravation de la dépendance extérieure malgré les reboisements. Bois et forêts des tropiques 322:4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neila Smichi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smichi, N., Messaoudi, Y., Allaf, K. et al. Steam explosion (SE) and instant controlled pressure drop (DIC) as thermo-hydro-mechanical pretreatment methods for bioethanol production. Bioprocess Biosyst Eng 43, 945–957 (2020). https://doi.org/10.1007/s00449-020-02297-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02297-6

Keywords

Navigation