Skip to main content
Log in

RNA Rings Strengthen Hairpin Accretion Hypotheses for tRNA Evolution: A Reply to Commentaries by Z.F. Burton and M. Di Giulio

  • Letter to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Theoretical minimal RNA ring design ensures coding over the shortest length once for each coding signal (start and stop codons, and each amino acid) and their hairpin configuration. These constraints define 25 RNA rings which surprisingly resemble ancestral tRNA loops, suggesting commonalities between RNA ring design and proto-tRNAs. RNA rings share several other properties with tRNAs, suggesting that primordial RNAs were multifunctional peptide coding sequences and structural RNAs. Two hypotheses, respectively, by M. Di Giulio and Z.F. Burton, derived from cloverleaf structural symmetries suggest that two and three, respectively, stem-loop hairpins agglutinated into tRNAs. Their authors commented that their respective structure-based hypotheses reflect better tRNA structure than RNA rings. Unlike these hypotheses, RNA ring design uses no tRNA-derived information, rendering model predictive power comparisons senseless. Some analyses of RNA ring primary and secondary structures stress RNA ring splicing in their predicted anticodon's midst, indicating ancestrality of split tRNAs, as the two-piece model predicts. Advancement of knowledge, rather than of specific hypotheses, gains foremost by examining independent hypotheses for commonalities, and only secondarily for discordances. RNA rings mimick ancestral biomolecules including tRNAs, and their evolution, and constitute an interesting synthetic system for early prebiotic evolution tests/simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Ahmed A, Frey G, Michel CJ (2007) Frameshift signals in genes associated with the circular code. In Silico Biol 7:155–168

    CAS  PubMed  Google Scholar 

  • Ahmed A, Frey G, Michel CJ (2010) Essential molecular functions associated with the circular code evolution. J Theor Biol 264:613–622

    Article  CAS  PubMed  Google Scholar 

  • Arquès DG, Michel CJ (1996) A complementary circular code in protein coding genes. J Theor Biol 182:45–58

    Article  PubMed  Google Scholar 

  • Branciamore S, Giulio Di (2011) The presence in tRNA molecule sequences of the double hairpin, an evolutionary stage through which the origin of this molecule is thought to have passed. J Mol Evol 72:364–367

    Article  CAS  Google Scholar 

  • Carrodeguas JA, Bogenhagen DF (2000) Protein sequences conserved in prokaryotic aminoacyl-tRNA synthetases are important for the activity of the processivity factor of human mitochondrial DNA polymerase. Nucleic Acids Res 28:1237–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaley MB, Korotkov EV, Phoenix DA (1999) Relationships among isoacceptor tRNAs seem to support the co-evolution theory of the origin of the genetic code. J Mol Evol 48:168–177

    Article  CAS  PubMed  Google Scholar 

  • Demongeot J, Moreira A (2007) A circular RNA at the origin of life. J Theor Biol 249:314–324

    Article  CAS  PubMed  Google Scholar 

  • Demongeot J, Norris V (2019) Emergence of a “cyclosome” in a primitive network capable of building “infinite” proteins. Life 9:51

    Article  CAS  PubMed Central  Google Scholar 

  • Demongeot J, Seligmann H (2019a) The Uroboros theory of life's origin: 22-nucleotide theoretical minimal RNA rings reflect evolution of genetic code and tRNA-rRNA translation machineries. Acta Biotheor. https://doi.org/10.1007/s10441-019-09356-w

    Article  PubMed  Google Scholar 

  • Demongeot J, Seligmann H (2019b) Evolution of tRNA into rRNA secondary structures. Gene Rep 17:100483

    Article  Google Scholar 

  • Demongeot J, Seligmann H (2019c) Theoretical minimal RNA rings recapitulate the order of the genetic code's codon-amino acid assignments. J Theor Biol 471:108–116

    Article  CAS  PubMed  Google Scholar 

  • Demongeot J, Seligmann H (2019d) Bias for 3'-dominant codon directional asymmetry in theoretical minimal RNA rings. J Comput Biol 26:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Demongeot J, Seligmann H (2019e) Spontaneous evolution of circular codes in theoretical minimal RNA rings. Gene 705:95–102

    Article  CAS  PubMed  Google Scholar 

  • Demongeot J, Seligmann H (2019f) More pieces of ancient than recent theoretical minimal proto-tRNA-like RNA rings in genes coding for tRNA synthetases. J Mol Evol 87:152–174

    Article  CAS  PubMed  Google Scholar 

  • Demongeot J, Seligmann H (2019g) Theoretical minimal RNA rings designed according to coding constraints mimic deamination gradients. Naturwissenschaften 106:44

    Article  CAS  PubMed  Google Scholar 

  • Demongeot J, Seligmann H (2020a) Pentamers with non-redundant frames: bias for natural circular code codons. J Mol Evol 88:194–201

    Article  CAS  PubMed  Google Scholar 

  • Demongeot J, Seligmann H (2020b) The primordial tRNA acceptor stem code from theoretical minimal RNA ring clusters. BMC Genet 21:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Giulio M (1992) On the origin of the transfer RNA molecule. J Theor Biol 159:199–214

    Article  PubMed  Google Scholar 

  • Di Giulio M (1995) Was it an ancient gene codifying for a hairpin RNA that, by means of direct duplication, gave rise to the primitive tRNA molecule? J Theor Biol 177:95–101

    Article  PubMed  Google Scholar 

  • Di Giulio M (1999) The non-monophyletic origin of the tRNA molecule. J Theor Biol 197:403–414

    Article  PubMed  Google Scholar 

  • Di Giulio M (2006) The non-monophyletic origin of the tRNA molecule and the origin of genes only after the evolutionary stage of the last universal common ancestor (LUCA). J Theor Biol 240:343–352

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2008a) The origin of genes could be polyphyletic. Gene 426:39–46

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2008b) The split genes of Nanoarchaeumequitans are an ancestral character. Gene 421:20–26

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2009) Formal proof that the split genes of tRNAs of Nanoarchaeumequitans are an ancestral character. J Mol Evol 69:505–511

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2012) The origin of the tRNA molecule: independent data favor a specific model of its evolution. Biochimie 94:1464–1466

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2013) A polyphyletic model for the origin of tRNAs has more support than a monophyletic model. J Theor Biol 318:124–128

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2019) A comparison between two models for understanding the origin of the tRNA molecule. J Theor Biol 480:99–103

    Article  CAS  PubMed  Google Scholar 

  • Dufton MJ (1997) Genetic code synonym quotas and amino acid complexity: cutting the cost of proteins? J Theor Biol 187:165–173

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Winkler-Oswatitsch R (1981a) Transfer-RNA, an early gene? Naturwissenschaften 68:282–292

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, WinklerOswatitsch R (1981b) Transfer-RNA: the early adaptor. Naturwissenschaften 68:217–228

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Sanschagrin PC, Kaguni LS, Kuhn LA (1999) The accessory subunit of mtDNA polymerase shares structural homology with aminoacyl-tRNA synthetases: implications for a dual role as a primer recognition factor and processivity clamp. Proc Natl Acad Sci USA 96:9527–9532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faure E, Barthélémy RM (2018) True mitochondrial tRNA punctuation and initiation using overlapping stop and start codons at specific and conserved positions. In: Mitochondrial DNA – new insights, Seligmann H and Warthi G (eds), chapter 1, InTech, London.

  • Faure E, Barthélémy RM (2019) Specific mitochondrial ss-tRNAs in phylum Chaetognatha. J Entomol Zool Studies 7:304–315

    Google Scholar 

  • Fujishima K, Kanai A (2014) tRNA gene diversity in the three domains of life. Front Genet 5:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimarães CR (2017) Self-referential encoding on modules of anticodon pairs-roots of the biological flow system. Life (Basel) 7:e16

    Google Scholar 

  • Hopfield JJ (1978) Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence, and kinetic proofreading. Proc Natl Acad Sci USA 75:4334–4338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DBF, Wang L (2010) Imprints of the genetic code in the ribosome. Proc Natl Acad Sci USA 107:8298–8303

    Article  PubMed  PubMed Central  Google Scholar 

  • Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J (2009) tRNAdb compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 37:159–162

    Article  CAS  Google Scholar 

  • Kim Y, Kowiatek B, Opron K, Burton ZF (2018) Type-II tRNAs and evolution of translation systems and the genetic code. Int J Mol Sci 19:e3275

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Opron K, Burton ZF (2019) A tRNA- and anticodon-centric view of the evolution of aminoacyl-tRNA synthetases, tRNAomes, and the genetic code. Life (Basel) 9:e37

    Google Scholar 

  • Kvenvolden KA, Lawless JG, Ponnamperuma C (1971) Nonprotein amino acids in the Murchison meteorite. Proc Natl Acad Sci USA 68:486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maizels N, Weiner AM (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci USA 91:6729–6734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazauric MH, Keith G, Logan D, Kreutzer R, Giegé R, Kern D (1998) Glycyl-tRNA synthetase from Thermus thermophiles. Wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems. Eur J Biochem 251:7442757

    Article  Google Scholar 

  • Michaud M, Cognat V, Duchêne AM, Maréchal-Drouard L (2011) A global picture of tRNA genes in plant genomes. Plant J 66:80–93

    Article  CAS  PubMed  Google Scholar 

  • Michel CJ (2019) Single-frame, multiple-frame and framing motifs in genes. Life (Basel) 9:e18

    Google Scholar 

  • Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  PubMed  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251

    Article  CAS  PubMed  Google Scholar 

  • Möller W, Janssen GM (1990) Transfer RNAs for primordial amino acids contain remnants of a primitive code at position 3 to 5. Biochimie 72:361–365

    Article  PubMed  Google Scholar 

  • Möller W, Janssen GM (1992) Statistical evidence for remnants of the primordial code in the acceptor stem of prokaryotic transfer RNA. J Mol Evol 34:471–477

    Article  PubMed  Google Scholar 

  • Opron K, Burton ZF (2018) Aminoacyl-tRNA synthetase evolution and sectoring of the genetic code. Int J Mol Sci 20:e40

    Article  CAS  PubMed  Google Scholar 

  • Pak D, Root-Bernstein R, Burton ZF (2017) tRNA structure and evolution and standardization to the three nucleotide genetic code. Transcription 8:205–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pak D, Du N, Kim Y, Sun Y, Burton ZF (2018a) Rooted tRNAomes and evolution of the genetic code. Transcription 9:137–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pak D, Kim Y, Burton ZF (2018b) Aminoacyl-tRNA synthetase evolution and sectoring of the genetic code. Transcription 9:205–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15:957–966

    Article  CAS  PubMed  Google Scholar 

  • Rogers SO (2019) Evolution of the genetic code based on conservative changes of codons, amino acids, and aminoacyl tRNA synthetases. J Theor Biol 466:1–10

    Article  CAS  PubMed  Google Scholar 

  • Root-Bernstein M, Root-Bernstein R (2015) The ribosome as a missing link in the evolution of life. J Theor Biol 367:130–158

    Article  CAS  PubMed  Google Scholar 

  • Root-Bernstein R, Root-Bernstein M (2016) The ribosome as a missing link in prebiotic evolution II: Ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs. J Theor Biol 397:115–127

    Article  CAS  PubMed  Google Scholar 

  • Root-Bernstein R, Root-Bernstein M (2019) The ribosome as a missing link in prebiotic evolution III: over-representation of tRNA- and rRNA-like sequences and plieofunctionality of ribosome-related molecules argues for the evolution of primitive genomes from ribosomal RNA modules. Int J Mol Sci 20:e140

    Article  CAS  PubMed  Google Scholar 

  • Root-Bernstein R, Kim Y, Sanjay A, Burton ZF (2016) tRNA evolution from proto-tRNA minihelix world. Transcription 7:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seligmann H (2008) Hybridization between mitochondrial heavy strand tDNA and expressed light strand tRNAmodulates the function of heavy strand tDNA as light strand replication origin. J Mol Biol 379:188–199

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2010) Mitochondrial tRNAs as light strand replication origins: similarity between anticodon loops andthe loop of the light strand replication origin predicts initiation of DNA replication. Biosystems 99:85–93

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2011) Mutation patterns due to converging mitochondrial replication and transcription increaselifespan, and cause growth rate-longevity tradeoffs. In: Seligmann H (ed) DNA Replication-Current Advances, chap 6. Intech, London

    Chapter  Google Scholar 

  • Seligmann H (2013) Pocketknife tRNA hypothesis: anticodons in mammal mitochondrial tRNBA side-arm loops translate proteins? Biosystems 113:165–176

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2014) Putative anticodons in mitochondrial tRNA sidearm loops: pocketknife tRNAs? J Theor Biol 340:155–163

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2016) Swinger RNA self-hybridization and mitochondrial non-canonical swinger transcription, transcription systematically exchanging nucleotides. J Theor Biol 399:84–91

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2018) Protein sequences recapitulate genetic code evolution. Comput Struct Biotechnol J 16:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seligmann H, Amzallag GN (2002) Chemical interactions between amino acid and RNA: multiplicity of the levels of specificity explains origin of the genetic code. Naturwissenschaften 89:542–551

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H, Labra A (2014) The relation between hairpin formation by mitochondrial WANCY tRNAs and theoccurrence of the light strand replication origin in Lepidosauria. Gene 542:248–257

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H, Krishnan NM (2006) Mitochondrial replication origin stability and propensity of adjacent tRNA genesto form putative replication origins increase developmental stability in lizards. J Exp Zool B Mol Dev Evol 306:433–449

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H, Krishnan NM, Rao BJ (2006a) Possible multiple origins of replication in primate mitochondria: Alternative role of tRNA sequences. J Theor Biol 241:321–332

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H, Krishnan NM, Rao BJ (2006b) Mitochondrial tRNA sequences as unusual replication origins: pathogenic implications for Homo sapiens. J Theor Biol 243:375–385

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H, Warthi G (2017) Genetic code optimization for cotranslational protein folding: codon directional asymmetry correlates with antiparallel betasheets, tRNA synthetase classes. Comput Struct Biotechnol J 15:412–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26:148–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K (2015) Origins and early evolution of the tRNA molecule. Life (Basel) 5:1687–1699

    CAS  Google Scholar 

  • Tanaka T, Kikuchi Y (2001) Origin of the cloverleaf shape of transfer RNA—the double hairpin model: implication for the role of tRNA intron and the long extra loop. Viva Origino 29:134–142

    CAS  Google Scholar 

  • Trifonov EN (2000) Consensus temporal order of amino acids and evolution of the triplet code. Gene 261:139–151

    Article  CAS  PubMed  Google Scholar 

  • Trnadb (2019) https://trna.bioinf.uni-leipzig.de/DataOutput/Tools

  • Weiner AM, Maizels N (1987) tRNA-like structures tag the 3' ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc Natl Acad Sci USA 84:7383–7387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widmann J, Di Giulio M, Yarus M, Knight R (2005) tRNA creation by hairpin duplication. J Mol Evol 61:524–530

    Article  CAS  PubMed  Google Scholar 

  • Wolf YI, Koonin EV (2001) Origin of an animal mitochondrial DNA polymerase subunit via lineage-specific acquisition of a glycyl-tRNA synthetase from bacteria of the Thermus-Deinococcus group. Trends Genet 17:431–433

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Seligmann.

Additional information

Handling editor: Michelle Meyer.

Authors order alphabetical.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demongeot, J., Seligmann, H. RNA Rings Strengthen Hairpin Accretion Hypotheses for tRNA Evolution: A Reply to Commentaries by Z.F. Burton and M. Di Giulio. J Mol Evol 88, 243–252 (2020). https://doi.org/10.1007/s00239-020-09929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-020-09929-1

Keywords

Navigation