Skip to main content

Advertisement

Log in

Characterization of an Anti-CD5 Directed CAR T-Cell against T-Cell Malignancies

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Summary

T-cell malignancies often result in poor prognosis and outcome for patients. Immunotherapy has recently emerged as a revolutionary treatment against cancer, and the success seen in CD19 CAR clinical trials may extend to T cell diseases. However, a shared antigen pool coupled with the impact of T-cell depletion incurred by targeting T cell disease remain concepts to be clinically explored with caution. Here we report on the ability of T cells transduced with a CD5CAR to specifically and potently lyse malignant T-cell lines and primary tumors in vitro in addition to significantly improving in vivo control and survival of xenograft models of T-ALL. To extensively explore and investigate the biological properties of a CD5 CAR, we evaluated multiple CD5 CAR constructs and constructed 3 murine models to characterize the properties of CD5 down-regulation, the efficacy and specificity produced by different CD5 CAR construct designs, and the impact of incorporating a CD52 safety switch using CAMPATH to modulate the persistency and function of CAR cells. These data support the potential use of CD5CAR T cells in the treatment of T cell malignancies or refractory disease in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Firor, A. E., Jares, A., & Ma, Y. (2015). From humble beginnings to success in the clinic: Chimeric antigen receptor-modified T-cells and implications for immunotherapy. Experimental Biology and Medicine, 240(8), 1087–1098.

    Article  CAS  Google Scholar 

  2. Brentjens, R. J., Davila, M. L., Riviere, I., Park, J., Wang, X., Cowell, L. G., et al. (2013). CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med, 5(177), 177ra138.

    Article  Google Scholar 

  3. Arai, S., Meagher, R., Swearingen, M., Myint, H., Rich, E., Martinson, J., & Klingemann, H. (2008). Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: A phase I trial. Cytotherapy, 10(6), 625–632.

    Article  CAS  Google Scholar 

  4. Maus, M. V., Grupp, S. A., Porter, D. L., & June, C. H. (2014). Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood, 123(17), 2625–2635.

    Article  CAS  Google Scholar 

  5. Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., Chew, A., Gonzalez, V. E., Zheng, Z., Lacey, S. F., Mahnke, Y. D., Melenhorst, J. J., Rheingold, S. R., Shen, A., Teachey, D. T., Levine, B. L., June, C. H., Porter, D. L., & Grupp, S. A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. The New England Journal of Medicine, 371(16), 1507–1517.

    Article  Google Scholar 

  6. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., & June, C. H. (2016). Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med, 365(8), 725–733.

    Article  Google Scholar 

  7. Ramos, C. A., Savoldo, B., & Dotti, G. (2014). CD19-CAR trials. Cancer Journal, 20(2), 112–118.

    Article  CAS  Google Scholar 

  8. Campana, D., van Dongen, J. J., Mehta, A., Coustan-Smith, E., Wolvers-Tettero, I. L., Ganeshaguru, K., et al. (1991). Stages of T-cell receptor protein expression in T-cell acute lymphoblastic leukemia. Blood, 77(7), 1546–1554.

    Article  CAS  Google Scholar 

  9. Strand, V., Lipsky, P. E., Cannon, G. W., Calabrese, L. H., Wiesenhutter, C., Cohen, S. B., Olsen, N. J., Lee, M. L., Lorenz, T. J., & Nelson, B. (1993). Effects of administration of an anti-CD5 plus immunoconjugate in rheumatoid arthritis. Results of two phase II studies. The CD5 plus rheumatoid arthritis investigators group. Arthritis and Rheumatism, 36(5), 620–630.

    Article  CAS  Google Scholar 

  10. Siena, S., Bregni, M., Formosa, A., Brando, B., Marenco, P., Lappi, D. A., et al. (1989). Immunotoxin-mediated inhibition of chronic lymphocytic leukemia cell proliferation in humans. Cancer research 1989, 49(12), 3328–3332.

    CAS  Google Scholar 

  11. Fishwild, D. M., & Strand, V. (1994). Administration of an anti-CD5 immunoconjugate to patients with rheumatoid arthritis: Effect on peripheral blood mononuclear cells and in vitro immune function. The Journal of Rheumatology, 21(4), 596–604.

    CAS  PubMed  Google Scholar 

  12. Azzam, H. S., Grinberg, A., Lui, K., Shen, H., Shores, E. W., & Love, P. E. (1998). CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. The Journal of Experimental Medicine, 188(12), 2301–2311.

    Article  CAS  Google Scholar 

  13. Mamonkin, M., Rouce, R. H., Tashiro, H., & Brenner, M. K. (2015). A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood, 126(8), 983–992.

    Article  CAS  Google Scholar 

  14. Uttenthal, B. J., Chua, I., Morris, E. C., & Stauss, H. J. (2012). Challenges in T cell receptor gene therapy. The Journal of Gene Medicine, 14(6), 386–399.

    Article  CAS  Google Scholar 

  15. Brentjens, R., Yeh, R., Bernal, Y., Riviere, I., & Sadelain, M. (2010). Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial. Molecular therapy : the journal of the American Society of Gene Therapy, 18(4), 666–668.

    Article  CAS  Google Scholar 

  16. Kalos, M., Levine, B. L., Porter, D. L., Katz, S., Grupp, S. A., Bagg, A., et al. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med, 3(95), 95ra73.

    Article  CAS  Google Scholar 

  17. Lee, D. W., Kochenderfer, J. N., Stetler-Stevenson, M., Cui, Y. K., Delbrook, C., Feldman, S. A., Fry, T. J., Orentas, R., Sabatino, M., Shah, N. N., Steinberg, S. M., Stroncek, D., Tschernia, N., Yuan, C., Zhang, H., Zhang, L., Rosenberg, S. A., Wayne, A. S., & Mackall, C. L. (2015). T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet, 385(9967), 517–528.

    Article  CAS  Google Scholar 

  18. Straathof, K. C., Pule, M. A., Yotnda, P., Dotti, G., Vanin, E. F., Brenner, M. K., et al. (2005). An inducible caspase 9 safety switch for T-cell therapy. Blood, 105(11), 4247–4254.

    Article  CAS  Google Scholar 

  19. Di Stasi, A., Tey, S. K., Dotti, G., Fujita, Y., Kennedy-Nasser, A., Martinez, C., et al. (2011). Inducible apoptosis as a safety switch for adoptive cell therapy. The New England Journal of Medicine, 365(18), 1673–1683.

    Article  Google Scholar 

  20. Rodgers, D. T., Mazagova, M., Hampton, E. N., Cao, Y., Ramadoss, N. S., Hardy, I. R., Schulman, A., du, J., Wang, F., Singer, O., Ma, J., Nunez, V., Shen, J., Woods, A. K., Wright, T. M., Schultz, P. G., Kim, C. H., & Young, T. S. (2016). Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proceedings of the National Academy of Sciences of the United States of America, 113(4), E459–E468.

    Article  CAS  Google Scholar 

  21. Ma, J. S., Kim, J. Y., Kazane, S. A., Choi, S. H., Yun, H. Y., Kim, M. S., Rodgers, D. T., Pugh, H. M., Singer, O., Sun, S. B., Fonslow, B. R., Kochenderfer, J. N., Wright, T. M., Schultz, P. G., Young, T. S., Kim, C. H., & Cao, Y. (2016). Versatile strategy for controlling the specificity and activity of engineered T cells. Proceedings of the National Academy of Sciences of the United States of America, 113(4), E450–E458.

    Article  CAS  Google Scholar 

  22. Golay, J., Manganini, M., Rambaldi, A., & Introna, M. (2004). Effect of alemtuzumab on neoplastic B cells. Haematologica, 89(12), 1476–1483.

    CAS  PubMed  Google Scholar 

  23. Rowan, W., Tite, J., Topley, P., & Brett, S. J. (1998). Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Immunology, 95(3), 427–436.

    Article  CAS  Google Scholar 

  24. Cruz, R. I., Hernandez-Ilizaliturri, F. J., Olejniczak, S., Deeb, G., Knight, J., Wallace, P., Thurberg, B. L., Kennedy, W., & Czuczman, M. S. (2007). CD52 over-expression affects rituximab-associated complement-mediated cytotoxicity but not antibody-dependent cellular cytotoxicity: Preclinical evidence that targeting CD52 with alemtuzumab may reverse acquired resistance to rituximab in non-Hodgkin lymphoma. Leukemia & Lymphoma, 48(12), 2424–2436.

    Article  CAS  Google Scholar 

  25. Papadantonakis, N., & Advani, A. S. (2016). Recent advances and novel treatment paradigms in acute lymphocytic leukemia. Therapeutic advances in hematology, 7(5), 252–269.

    Article  CAS  Google Scholar 

  26. Ginaldi, L., De Martinis, M., Matutes, E., Farahat, N., Morilla, R., Dyer, M. J., et al. (1998). Levels of expression of CD52 in normal and leukemic B and T cells: Correlation with in vivo therapeutic responses to Campath-1H. Leukemia Research, 22(2), 185–191.

    Article  CAS  Google Scholar 

  27. Chen, K. H., Wada, M., Firor, A. E., Pinz, K. G., Jares, A., Liu, H., Salman, H., Golightly, M., Lan, F., Jiang, X., & Ma, Y. (2016). Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies. Oncotarget, 7(35), 56219–56232.

    PubMed  PubMed Central  Google Scholar 

  28. Pinz, K., Liu, H., Golightly, M., Jares, A., Lan, F., Zieve, G. W., Hagag, N., Schuster, M., Firor, A. E., Jiang, X., & Ma, Y. (2016). Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells. Leukemia, 30(3), 701–707.

    Article  CAS  Google Scholar 

  29. Ma, G., Shen, J., Pinz, K., Wada, M., Park, J., Kim, S., et al. (2019). Targeting T cell malignancies using CD4CAR T-cells and implementing a natural safety switch. Stem Cell Reviews and Reports, 15(3), 443–447.

    Article  Google Scholar 

  30. Tahmasebi, S., Elahi, R., & Esmaeilzadeh, A. (2019). Solid tumors challenges and new insights of CAR T cell engineering. Stem Cell Reviews and Reports., 15, 619–636. https://doi.org/10.1007/s12015-019-09901-7.

    Article  Google Scholar 

  31. Bertram, J. H., Gill, P. S., Levine, A. M., Boquiren, D., Hoffman, F. M., Meyer, P., & Mitchell, M. S. (1986). Monoclonal antibody T101 in T cell malignancies: A clinical, pharmacokinetic, and immunologic correlation. Blood, 68(3), 752–761.

    Article  CAS  Google Scholar 

  32. LeMaistre, C. F., Rosen, S., Frankel, A., Kornfeld, S., Saria, E., Meneghetti, C., et al. (1991). Phase I trial of H65-RTA immunoconjugate in patients with cutaneous T-cell lymphoma. Blood, 78(5), 1173–1182.

    Article  CAS  Google Scholar 

  33. Tabbekh, M., Franciszkiewicz, K., Haouas, H., Lecluse, Y., Benihoud, K., Raman, C., et al. (2011). Rescue of tumor-infiltrating lymphocytes from activation-induced cell death enhances the antitumor CTL response in CD5-deficient mice. Journal of Immunology, 187(1), 102–109.

    Article  CAS  Google Scholar 

  34. Tabbekh, M., Mokrani-Hammani, M., Bismuth, G., & Mami-Chouaib, F. (2013). T-cell modulatory properties of CD5 and its role in antitumor immune responses. Oncoimmunology, 2(1), e22841.

    Article  Google Scholar 

  35. Zent, C. S., Secreto, C. R., LaPlant, B. R., Bone, N. D., Call, T. G., Shanafelt, T. D., et al. (2008). Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early-intermediate stage chronic lymphocytic leukemia (CLL) treated with alemtuzumab and rituximab. Leukemia Research, 32(12), 1849–1856.

    Article  CAS  Google Scholar 

  36. Hu, Y., Turner, M. J., Shields, J., Gale, M. S., Hutto, E., Roberts, B. L., Siders, W. M., & Kaplan, J. M. (2009). Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology, 128(2), 260–270.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Todd Rueb and Rebecca Connor at the Stony Brook University Flow Cytometry Core Facility for technical advice and assistance. We also thank Laurie Levine and Joan Pashinsky in Stony Brook University animal facility for assistance with animal care.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyu Zhang or Yupo Ma.

Ethics declarations

Conflict of Interest

Y.M. is a cofounder of iCell Gene Therapeutics, LLC.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

Relative titer of CD5CAR-3G lentivirus (JPG 1259 kb)

Figure S2

CD5CAR and anchored CD5CAR constructs induce downregulation of self-CD5 surface expression without modulating CD5 decrease on nearby cells in co-cultures (JPG 3853 kb)

Figure S3

CD5CAR-3G T cells suppress CCRF-CEM expansion in vivo (JPG 999 kb)

Figure S4

Persistence of CCRF-CEM cells in mouse peripheral blood. (A) (JPG 1218 kb)

Figure S5

CD52 co-expressed CD5CAR-28 and CD5CAR-3G T cells lyse CD5 positive T-ALL cell lines and normal T cells as well as CD5CAR-3G T cells. (JPG 4550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, M., Zhang, H., Fang, L. et al. Characterization of an Anti-CD5 Directed CAR T-Cell against T-Cell Malignancies. Stem Cell Rev and Rep 16, 369–384 (2020). https://doi.org/10.1007/s12015-019-09937-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09937-9

Keywords

Navigation