Skip to main content
Log in

Differential Expression of Hippocampal Circular RNAs in the BTBR Mouse Model for Autism Spectrum Disorder

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with unknown etiology. Recent experimental evidences suggest the contribution of non-coding RNAs (ncRNAs) in the pathophysiology of ASD. In this work, we aimed to investigate the expression profile of the ncRNA class of circular RNAs (circRNAs) in the hippocampus of the BTBR T + tf/J (BTBR) mouse model and age-matched C57BL/6J (B6) mice. Alongside, we analyzed BTBR hippocampal gene expression profile to evaluate possible correlations between the differential abundance of circular and linear gene products. From RNA sequencing data, we identified circRNAs highly modulated in BTBR mice. Thirteen circRNAs and their corresponding linear isoforms were validated by RT-qPCR analysis. The BTBR-regulated circCdh9 was better characterized in terms of molecular structure and expression, highlighting altered levels not only in the hippocampus, but also in the cerebellum, prefrontal cortex, and amygdala. Finally, gene expression analysis of the BTBR hippocampus pinpointed altered biological and molecular pathways relevant for the ASD phenotype. By comparison of circRNA and gene expression profiles, we identified 6 genes significantly regulated at either circRNA or mRNA gene products, suggesting low overall correlation between circRNA and host gene expression. In conclusion, our results indicate a consistent deregulation of circRNA expression in the hippocampus of BTBR mice. ASD-related circRNAs should be considered in functional studies to identify their contribution to the etiology of the disorder. In addition, as abundant and highly stable molecules, circRNAs represent interesting potential biomarkers for autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASD:

Autism spectrum disorder

ncRNAs:

Non-coding RNAs

circRNAs:

Circular RNAs

BTBR:

BTBR T + tf/J

B6:

C57BL/6J

lncRNAs:

Long non-coding RNAs

DEC:

Differentially expressed circRNA

DEG:

Differentially expressed gene

miscRNA:

Miscellaneous RNA

Cb:

Cerebellum

VS:

Ventral striatum

Pfx:

Prefrontal cortex

Amy:

Amygdala

HS:

Heparan sulfate

References

  1. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn, Washington, DC

  2. Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341–355. https://doi.org/10.1038/nrg2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geschwind DH (2008) Autism: many genes, common pathways? Cell 135:391–395. https://doi.org/10.1016/j.cell.2008.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493:327–337. https://doi.org/10.1038/nn1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ, Takasu MA, Tao X et al (2001) Calcium regulation of neuronal gene expression. Proc Natl Acad Sci U S A 98:11024–11031. https://doi.org/10.1073/pnas.191352298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543. https://doi.org/10.1073/pnas.0600906103

    Article  CAS  PubMed  Google Scholar 

  7. Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13:528–541. https://doi.org/10.1038/nrn3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aksoy-Aksel A, Zampa F, Schratt G (2014) MicroRNAs and synaptic plasticity--a mutual relationship. Philos Trans R Soc B Biol Sci 369:20130515–20130515. https://doi.org/10.1126/science.1244193

    Article  CAS  Google Scholar 

  9. Hanan M, Soreq H, Kadener S (2016) CircRNAs in the brain. RNA Biol 14:1028–1034. https://doi.org/10.1371/journal.pone.0141214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu YE, Parikshak NN, Belgard TG, Geschwind DH (2016) Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nat Neurosci 19:1463–1476. https://doi.org/10.1038/nn.4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hicks SD, Middleton FA (2016) A comparative review of microrna expression patterns in autism spectrum disorder. Front Psychiatry 7:843. https://doi.org/10.3390/ijms16048676

    Article  CAS  Google Scholar 

  12. Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, Hartl C, Leppa V et al (2016) Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540:423–427. https://doi.org/10.1038/nature20612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vicens Q, Westhof E (2014) Biogenesis of circular RNAs. Cell 159:13–14. https://doi.org/10.1016/j.cell.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  14. Salzman J (2016) Circular RNA expression: its potential regulation and function. Trends Genet 32:309–316. https://doi.org/10.1016/j.tig.2016.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  16. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338. https://doi.org/10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  17. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610. https://doi.org/10.1038/nn.3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885. https://doi.org/10.1016/j.molcel.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  19. Chen W, Schuman E (2016) Circular RNAs in brain and other tissues: a functional enigma. Trends Neurosci 39:597–604. https://doi.org/10.1016/j.tins.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  20. Lukiw W (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:1–2. https://doi.org/10.3389/fgene.2013.00307

    Article  CAS  Google Scholar 

  21. Zhao Y, Alexandrov P, Jaber V, Lukiw W (2016) Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Genes (Basel) 7:116. https://doi.org/10.1016/j.biocel.2015.11.001

    Article  CAS  Google Scholar 

  22. Zhou J, Xiong Q, Chen H et al (2017) Identification of the spinal expression profile of non-coding RNAs involved in neuropathic pain following spared nerve injury by sequence analysis. Front Mol Neurosci 10:325. https://doi.org/10.1186/1756-6606-4-31

    Article  CAS  Google Scholar 

  23. Piwecka M, Glažar P, Hernandez-Miranda LR et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357:eaam8526. https://doi.org/10.1016/S0896-6273(00)80146-4

    Article  PubMed  Google Scholar 

  24. McFarlane HG, Kusek GK, Yang M et al (2008) Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav 7:152–163. https://doi.org/10.1177/08830738050200082201

    Article  CAS  PubMed  Google Scholar 

  25. Blanchard DC, Defensor EB, Meyza KZ, Pobbe RL, Pearson BL, Bolivar VJ, Blanchard RJ (2012) BTBR T+tf/J mice: autism-relevant behaviors and reduced fractone-associated heparan sulfate. Neurosci Biobehav Rev 36:285–296. https://doi.org/10.1016/j.neubiorev.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  26. Meyza KZ, Defensor EB, Jensen AL, Corley MJ, Pearson BL, Pobbe RL, Bolivar VJ, Blanchard DC et al (2013) The BTBR T+ tf/J mouse model for autism spectrum disorders-in search of biomarkers. Behav Brain Res 251:25–34. https://doi.org/10.1016/j.bbr.2012.07.021

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34:e63. https://doi.org/10.1093/nar/gkl151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  29. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1073/pnas.85.8.2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1016/j.cell.2012.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1287/moor.16.2.351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq 2. Genome Biol 15:31. https://doi.org/10.1186/gb-2013-14-4-r36

    Article  CAS  Google Scholar 

  35. Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34:W720–W724. https://doi.org/10.1093/nar/gkl167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97. https://doi.org/10.1038/srep13044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Glažar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20:1666–1670. https://doi.org/10.1261/rna.043687.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215. https://doi.org/10.1038/ncomms11215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Imielinski M et al (2009) Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459:528–533. https://doi.org/10.1038/nature07999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma D, Salyakina D, Jaworski JM, Konidari I, Whitehead PL, Andersen AN, Hoffman JD, Slifer SH et al (2009) A genome-wide association study of autism reveals a common novel risk locus at 5p14.1. Ann Hum Genet 73:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Provenzano G, Corradi Z, Monsorno K et al (2016) Comparative gene expression analysis of two mouse models of autism: transcriptome profiling of the BTBR and En2−/− hippocampus. Front Neurosci 10:61. https://doi.org/10.1016/j.jneuroim.2013.02.019

    Article  CAS  Google Scholar 

  42. Daimon CM, Jasien JM, Wood WH et al (2015) Hippocampal transcriptomic and proteomic alterations in the BTBR mouse model of autism spectrum disorder. Front Physiol 6:341. https://doi.org/10.1111/j.1601-183X.2011.00702.x

    Article  CAS  Google Scholar 

  43. Sfari database. Available at: https://gene.sfari.org/autdb/Welcome.do.

  44. Heyes S, Pratt WS, Rees E, Dahimene S, Ferron L, Owen MJ, Dolphin AC (2015) Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog Neurobiol 134:36–54. https://doi.org/10.1016/j.pneurobio.2015.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Damaj L, Lupien-Meilleur A, Lortie A, Riou É, Ospina LH, Gagnon L, Vanasse C, Rossignol E (2015) CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur J Hum Genet 23:1505–1512. https://doi.org/10.1038/ejhg.2015.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhat S, Dao DT, Terrillion CE, Arad M, Smith RJ, Soldatov NM, Gould TD (2012) CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog Neurobiol 99:1–14. https://doi.org/10.1016/j.pneurobio.2012.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Srivastava S, Engels H, Schanze I, Cremer K, Wieland T, Menzel M, Schubach M, Biskup S et al (2016) Loss-of-function variants in HIVEP2 are a cause of intellectual disability. Eur J Hum Genet 24:556–561. https://doi.org/10.1038/ejhg.2015.151

    Article  CAS  PubMed  Google Scholar 

  48. Williams ME, Wilke SA, Daggett A, Davis E, Otto S, Ravi D, Ripley B, Bushong EA et al (2011) Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron 71:640–655. https://doi.org/10.1016/j.neuron.2011.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87:684–698. https://doi.org/10.1016/j.neuron.2015.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Muller CL, Anacker AMJ, Veenstra-VanderWeele J (2016) The serotonin system in autism spectrum disorder: from biomarker to animal models. Neuroscience 321:24–41. https://doi.org/10.1016/j.neuroscience.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  51. Gould GG, Burke TF, Osorio MD, Smolik CM, Zhang WQ, Onaivi ES, Gu TT, DeSilva M et al (2014) Enhanced novelty-induced corticosterone spike and upregulated serotonin 5-HT1A and cannabinoid CB1 receptors in adolescent BTBR mice. Psychoneuroendocrinology 39:158–169. https://doi.org/10.1016/j.psyneuen.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  52. Golubeva AV, Joyce SA, Moloney G, Burokas A, Sherwin E, Arboleya S, Flynn I, Khochanskiy D et al (2017) Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 24:166–178. https://doi.org/10.1016/j.ebiom.2017.09.020

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pearson BL, Corley MJ, Vasconcellos A, Blanchard DC, Blanchard RJ (2013) Heparan sulfate deficiency in autistic postmortem brain tissue from the subventricular zone of the lateral ventricles. Behav Brain Res 243:138–145. https://doi.org/10.1016/j.bbr.2012.12.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Poulain FE, Yost HJ (2015) Heparan sulfate proteoglycans: a sugar code for vertebrate development? Development 142:3456–3467. https://doi.org/10.1242/dev.098178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Griesi-Oliveira K, Acab A, Gupta AR, Sunaga DY, Chailangkarn T, Nicol X, Nunez Y, Walker MF et al (2015) Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol Psychiatry 20:1350–1365. https://doi.org/10.1038/mp.2014.141

    Article  CAS  PubMed  Google Scholar 

  56. Ornoy A, Weinstein-Fudim L, Ergaz Z (2019) Prevention or amelioration of autism-like symptoms in animal models: will it bring us closer to treating human ASD? Int J Mol Sci. https://doi.org/10.3390/ijms20051074

  57. Niculescu AB (2013) Convergent functional genomics of psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 162:587–594. https://doi.org/10.1002/ajmg.b.32163

    Article  CAS  Google Scholar 

  58. Memczak S, Papavasileiou P, Peters O, Rajewsky N (2015) Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 10:e0141214. https://doi.org/10.1371/journal.pone.0141214.s014

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT, Xiao X (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61:221–230. https://doi.org/10.1373/clinchem.2014.230433

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Institute of Applied Genomics for sequencing and Bio-Fab Research for helpful technical support.

Funding

This work was supported by 2018-LIFE2020-REG LAZIO to C.P.; and ELIXIR-IIB and Cineca, Call HPC@Cineca, to C.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlo Presutti or Cecilia Mannironi.

Ethics declarations

All experiments were conducted in strict accordance with the European Community and Italian Nation regulation of animal use in research, and following NIH guidelines on animal care. The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Fig. S1

Pearson’s correlation between RNA-seq and RT-qPCR data. The analysis was done on 12 circRNAs. (a) Pearson’s correlation graph. R2 and p are indicated. (b) RNA-seq and RT-qPCR data are expressed as log2FC. Dots in black (panel a) and characters in bold (panel b) highlight circRNAs with a Pearson’s significant correlation (see Fig. 2b in the main manuscript). (PNG 31 kb)

High resolution image (TIF 83 kb)

Table S1

(XLSX 57 kb)

Table S2

(XLSX 98 kb)

Table S3

(XLSX 14 kb)

Table S4

(XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasparini, S., Del Vecchio, G., Gioiosa, S. et al. Differential Expression of Hippocampal Circular RNAs in the BTBR Mouse Model for Autism Spectrum Disorder. Mol Neurobiol 57, 2301–2313 (2020). https://doi.org/10.1007/s12035-020-01878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01878-6

Keywords

Navigation