Skip to main content
Log in

Fungal biocatalysts for labdane diterpene hydroxylation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Labdane diterpenes and their derivatives have shown remarkable biological activities and are useful as chiral building blocks for the synthesis of a variety of bioactive compounds. There is great interest in developing biocatalyst technology to achieve regio- and stereoselective hydroxylation of unactivated C–H bonds in complex natural products, since the functionalization of unactivated C–H bonds generally requires hard reaction conditions and highly reactive oxidizing agents, which are limited regarding the control of regio- and stereoselectivity. Filamentous fungi are efficient biocatalysts capable of catalyzing a wide variety of hydroxylation reactions, and the use of whole cell biocatalysts provides advantages regarding cofactor regeneration and is much less expensive. Therefore, the goal of this study was to select biocatalysts to develop biotransformation processes that can be scalable under mild reaction conditions for hydroxylation of a labdane diterpene, 3β-acetoxy-copalic acid, which contains the trans-decalin moiety and a side chain dienic system appropriate for the preparation of a variety of compounds. Biotransformation processes were carried out and five filamentous fungi were selected as capable of producing hydroxylated diterpenes at positions C-3, C-6, C-7 and C-18 of the trans-decalin moiety and C-13 of the side chain dienic system. Hydroxylation reactions occurred with regio- and stereoselectivity by using some fungi that produced only the 6α, 7α and 13α-hydroxyl derivatives. The chemical structures of the hydroxylated diterpenes were determined from spectrometric and spectroscopic data, and the relative stereochemistry of stereogenic centers was established from coupling constants, by NOE-diff experiments and/or by computational calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mafu S, Zerbe P (2018) Plant diterpenoid metabolism for manufacturing the biopharmaceuticals of tomorrow: prospects and challenges. Phytochem Rev 17:113–130

    Article  CAS  Google Scholar 

  2. Tran QTN, Wong WSF, Chai CLL (2017) Labdane diterpenoids as potential anti-inflammatory agents. Pharmacol Res 124:43–63

    Article  CAS  PubMed  Google Scholar 

  3. Silva AN, Soares ACF, Cabral MMW, Andrade ARP, Silva MBM, Martins CHG, Veneziani RCS, Ambrósio SR, Bastos JK, Heleno VCG (2017) Antitubercular activity increase in labdane diterpenes from Copaifera oleoresin through structural modification. J Braz Chem Soc 28:1106–1112

    CAS  Google Scholar 

  4. Pal M, Mishra T, Kumar A, Tewari SK (2016) Medicinal plants: biological evaluation of terrestrial and marine plant originated labdane diterpenes (a review). Pharm Chem J 50:558–567

    Article  CAS  Google Scholar 

  5. Vargas FS, Almeida PDO, Aranha ESP, Boleti APA, Newton P, Vasconcellos MC, Junior VFV, Lima ES (2015) Biological activities and cytotoxicity of diterpenes from Copaifera spp. oleoresins. Molecules 20:6194–6210

    Article  CAS  PubMed Central  Google Scholar 

  6. Sousa IP, Teixeira MVS, Furtado NAJC (2018) An overview of biotransformation and toxicity of diterpenes. Molecules 23:1387–1418

    Article  PubMed Central  CAS  Google Scholar 

  7. Frija LMT, Frade RFM, Afonso CAM (2011) Isolation, chemical, and biotransformation routes of labdane-type diterpenes. Chem Rev 111:4418–4452

    Article  CAS  PubMed  Google Scholar 

  8. Rico-Martínez M, Medina FG, Marrero JG, Osegueda-Robles S (2014) Biotransformation of diterpenes. RSC Adv 4:10627–10647

    Article  Google Scholar 

  9. Barrero AF, Herrador MM, Arteaga P, Artega JF, Arteaga AF (2012) Communic acids: occurrence, properties and use as chirons for the synthesis of bioactive compounds. Molecules 17:1448–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahdjour S, Harche-Kaid M, Haidour A, Chahboun R, Alvarez-Manzaneda E (2016) Short route to cassane-type diterpenoids: synthesis of the supposed structure of benthaminin 1. Org Lett 18:5964–5967

    Article  CAS  PubMed  Google Scholar 

  11. Roh C (2013) Biotransformation for multiple regio-selective hydroxylation of isoflavonoid. Biocatal Agric Biotechnol 2:403–408

    Article  Google Scholar 

  12. Sultana N (2018) Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids 136:76–92

    Article  CAS  PubMed  Google Scholar 

  13. Mao S, Zhang L, Ge Z, Wang X, Li Y, Liu X, Liu F, Lu F (2017) Microbial hydroxylation of steroids by Penicillium decumbens. J Mol Catal B Enzym 133:S346–S351

    Article  CAS  Google Scholar 

  14. Bhatti HN, Khera RA (2012) Biological transformations of steroidal compounds: a review. Steroids 77:1267–1290

    Article  CAS  PubMed  Google Scholar 

  15. Świzdor A, Panek A, Milecka-Tronina N (2017) Hydroxylative activity of Aspergillus niger towards androst-4-ene and androst-5-ene steroids. Steroids 126:101–106

    Article  PubMed  CAS  Google Scholar 

  16. Nassiri-Koopaei N, Faramarzi MA (2015) Recent developments in the fungal transformation of steroids. Biocatal Biotransformation 33:1–28

    Article  CAS  Google Scholar 

  17. Felpeto-Santero C, Galán B, Luengo JM, Fernández-Canon JM, Del Cerro C, Medrano FJ, García JL (2019) Identification and expression of the 11β-steroid hydroxylase from Cochliobolus lunatus in Corynebacterium glutamicum. Microb Biotechnol 12:856–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cresnar B, Petric S (2011) Cytochrome P450 enzymes in the fungal kingdom. Biochim Biophys Acta 1814:29–35

    Article  CAS  PubMed  Google Scholar 

  19. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447

    Article  CAS  PubMed  Google Scholar 

  20. Pellis A, Cantone S, Ebert C, Gardossi L (2018) Evolving biocatalysis to meet bioeconomy challenges and opportunities. N Biotechnol 40:154–169

    Article  CAS  PubMed  Google Scholar 

  21. Sakkos JK, Wackett LP, Aksan A (2019) Enhancement of biocatalyst activity and protection against stressors using a microbial exoskeleton. Sci Rep 9:3158–3169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kim CS, Seo JH, Kang DG, Cha HJ (2014) Engineered whole-cell biocatalyst-based detoxification and detection of neurotoxic organophosphate compounds. Biotechnol Adv 32:652–662

    Article  CAS  PubMed  Google Scholar 

  23. Sührer I, Langemann T, Lubitz W, Weuster-Botz D, Castiglione K (2015) A novel one-step expression and immobilization method for the production of biocatalytic preparations. Microb Cell Fact 14:180–188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Klauberg C, Vidala E, Rodriguez LCE, Diaz-Balteiro L (2014) Determining the optimal harvest cycle for copaíba (Copaifera spp.) oleoresin production. Agric Syst 131:116–122

    Article  Google Scholar 

  25. IBGE (2019) Instituto Brasileiro de Geografia e Estatística. https://sidra.ibge.gov.br/Tabela/289. Accessed 18 Oct 2019

  26. Souza AB, Martins CHG, Souza MGM, Furtado NAJC, Heleno VCG, Sousa JPB, Rocha EMP, Bastos JK, Cunha WR, Veneziani RCS, Ambrósio SR (2011) Antimicrobial activity of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria. Phytother Res 25:215–220

    CAS  PubMed  Google Scholar 

  27. Rizzatti ACS, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM (2001) Purification and properties of a thermostable extracellular β-D-xylosidase produced by a thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotechnol 26:156–160

    Article  CAS  PubMed  Google Scholar 

  28. Jackson M, Karwoswski JP, Humphrey PE, Kohl WL, Barlow GJ, Tanaka SK (1993) Calbistrins, novel antifungal agents produced by Penicillium restrictum. J Antibiot 46:34–38

    Article  CAS  Google Scholar 

  29. Clinical and Laboratory Standards Institute (2017) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, 3rd.edn. CLSI M-38, Wayne, Pennsylvanian

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT

  31. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  33. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  34. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  35. Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism I. A gauge-invariant LCAO method for N.M.R. chemical shifts. Mol Phys 27:789–807

    Article  CAS  Google Scholar 

  36. Wolinski K, Hilton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  37. Deng W, Cheeseman JR, Frisch MJ (2006) Calculation of nuclear spin − spin coupling constants of molecules with first and second row atoms in study of basis set dependence. J Chem Theory Comput 2:1028–1037

    Article  CAS  PubMed  Google Scholar 

  38. Lodewyk MW, Siebert MR, Tantillo DJ (2012) Computational prediction of 1 h and 13c chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 112:1839–1862

    Article  CAS  PubMed  Google Scholar 

  39. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  PubMed  Google Scholar 

  40. Chen L, Zhu H, Wang R, Zhou K, Jing Y, Qiu F (2008) Ent-labdane diterpenoid lactone stereoisomers from andrographis paniculata. J Nat Prod 71:852–855

    Article  CAS  PubMed  Google Scholar 

  41. Brasil DSB, Alves CN, Guilhon GMSP, Muller AH, Secco RS, Peris G, Llusar R (2008) Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity. Int J Quantum Chem 108:2564–2575

    Article  CAS  Google Scholar 

  42. Braun B, Breitenbach H (1977) Strukturauflärung einer neuen diterpensäure aus metasequoia glyptostroboides mit hilfe der 13C NMR Spektroskopie. Tetrahedron 33:145–150

    Article  CAS  Google Scholar 

  43. Pretsch E, Bühlmann P, Affolter C (2000) Structure determination of organic compounds. Springer, Berlin

    Book  Google Scholar 

  44. Bohlmann F, Knoll KH, King RM, Robinson H (1979) Neue α-santalen- und labdan-derivate. Phytochemistry 18:1997–2002

    Article  CAS  Google Scholar 

  45. Grant DM, Cheney BV (1967) Carbon-13 magnetic resonance. VII. Steric perturbation of the carbon-13 chemical shift. J Am Chem Soc 89:5315–5318

    Article  CAS  Google Scholar 

  46. Cheney BV, Grant DM (1967) Carbon-13 magnetic resonance. VIII. Theory of carbon-13 chemical shifts applied to saturated hydrocarbons. J Am Chem Soc 89:5319–5327

    Article  CAS  Google Scholar 

  47. Parshikov IA, Woodling KA, Sutherland JB (2015) Biotransformations of organic compounds mediated by cultures of Aspergillus niger. Appl Microbiol Biotechnol 99:6971–6986

    Article  CAS  PubMed  Google Scholar 

  48. Lima MAS, Oliveira MCF, Pimenta ATÀ, Uchôa PKS (2019) Aspergillus niger: a hundred years of contribution to the natural products chemistry. J Braz Chem Soc 30:2029–2059

    CAS  Google Scholar 

  49. Kelly SL, Kelly DE (2013) Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Philos Trans R Soc Lond B Biol Sci 368:20120476–20120492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Parshikov IA, Modyanova LV, Dovgilivich EV, Terent’ev PB, Vorob’eva LI, Grishina GV (1992) Microbiological transformation of nitrogen-containing heterocyclic compounds. 3. Microbiological synthesis of hydroxy derivatives of 1-benzoylpiperidine and 1-benzoylpyrrolidine. Chem Heterocycl Compd 28:159–162

    Article  Google Scholar 

  51. Burkhead KD, Peterson SW, Bolen PL (1994) Microbial hydroxylation. I. Hydroxylation of aniline by Aspergillus alliaceus, A. albertensis and A. terreus. J Ind Microbiol 13:233–237

    Article  CAS  Google Scholar 

  52. Nascimento JS, Núnez WER, Santos VHP, Aleu J, Cunha S, Silva EO (2019) Mapping the biotransformation of coumarins through filamentous fungi. Molecules 24:3531–3539

    Article  PubMed Central  CAS  Google Scholar 

  53. Parshikov IA, Sutherland JA (2014) The use of Aspergillus niger cultures for biotransformation of terpenoids. Process Biochem 49:2086–2100

    Article  CAS  Google Scholar 

  54. Shin J, Kim JE, Lee YW, Son H (2018) Fungal cytochrome P450s and the P450 complement (cypome) of Fusarium graminearum. Toxins 10:112–130

    Article  PubMed Central  CAS  Google Scholar 

  55. Jakupovic J, Baruah RN, Bchlmann F, King RM, Robinson H (1985) New alicyclic diterpenes and ent-labdanes from Gutierre zia solbrigh. Tethrahedron 41:4537–4544

    Article  CAS  Google Scholar 

  56. Lomas JS (2014) 1H NMR spectra of alcohols and diols in chloroform: DFT/GIAO calculation of chemical shifts. Magn Reson Chem 52:745–754

    Article  CAS  PubMed  Google Scholar 

  57. Lomas JS (2014) 1H NMR spectra of butane-1,4-diol and other 1,4-diols: DFT calculation of shifts and coupling constants. Magn Reson Chem 52:87–97

    Article  CAS  PubMed  Google Scholar 

  58. Kutateladze AG, Mukhina OA (2014) Relativistic force field: parametric computations of proton–proton coupling constants in 1H NMR spectra. J Org Chem 79:8397–8406

    Article  CAS  PubMed  Google Scholar 

  59. Lomas JS (2013) 1H NMR spectra of ethane-1,2-diol and other vicinal diols in benzene: GIAO/DFT shift calculations. Magn Reson Chem 51:32–41

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to São Paulo Research Foundation, FAPESP, [Grants 2011/13630-7, 2012/01766-4 and 2016/25201-7], Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, [Grants 306345/2016-1, 306441/2017–9, 313648/2018-2], and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, [finance code 001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niege Araçari Jacometti Cardoso Furtado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz de Carvalho, T., de Oliveira Silva, E., Soares, G.A. et al. Fungal biocatalysts for labdane diterpene hydroxylation. Bioprocess Biosyst Eng 43, 1051–1059 (2020). https://doi.org/10.1007/s00449-020-02303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02303-x

Keywords

Navigation