Skip to main content

Advertisement

Log in

Banking of corneal stromal lenticules: a risk-analysis assessment with the EuroGTP II interactive tool

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

We evaluated the feasibility and performed a risk–benefit analysis of the storage and widespread distribution of stromal lenticules for clinical application using a new systematic tool (European Good Tissue and cells Practices II—EuroGTP II tool), specifically designed for assessing the risk, safety and efficacy of substances of human origin. Three types of potential tissue preparations for human stromal lenticules were evaluated: cryopreserved, dehydrated and decellularized. The tool helps to identify an overall risk score (0–2: negligible; 2–6: low; 6–22: moderate; > 22: high) and suggests risk reduction strategies. For all the three types of products, we found the level of risk to be as “moderate”. A process validation, pre-clinical in vitro and in vivo evaluations and a clinical study limited to a restricted number of patients should therefore be performed in order to mitigate the risks. Our study allowed to establish critical points and steps necessary to implement a new process for safe stromal lenticule preparation by the eye banks to be used in additive keratoplasty. Moreover, it shows that the EuroGTP II tool is useful to assess and identify risk reduction strategies for introduction of new Tissue and Cellular Therapies and Products into the clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alió Del Barrio JL, El Zarif M, Azaar A et al (2018) Corneal stroma enhancement with decellularized stromal laminas with or without stem cell recellularization for advanced keratoconus. Am J Ophthalmol 186:47–58

    Article  Google Scholar 

  • Angunawela RI, Riau AK, Chaurasia SS et al (2012) Refractive lenticule re-implantation after myopic ReLEx: a feasibility study of stromal restoration after refractive surgery in a rabbit model. Invest Ophthalmol Vis Sci 53:4975–4985

    Article  Google Scholar 

  • Centro Nazionale Trapianti (2016) Linee guida per il prelievo, la processazione e la distribuzione di tessuti a scopo di trapianto 9/2016

  • Damgaard IB, Riau AK, Liu YC et al (2018) Reshaping and customization of SMILE-derived biological lenticules for intrastromal implantation. Invest Ophthalmol Vis Sci 59:2555–2563

    Article  CAS  Google Scholar 

  • Ganesh S, Brar S (2015) Femtosecond intrastromal lenticular implantation combined with accelerated collagen cross-linking for the treatment of keratoconus-initial clinical result in 6 eyes. Cornea 34:1331–1339

    Article  Google Scholar 

  • Ganesh S, Brar S, Rao PA (2014) Cryopreservation of extracted corneal lenticules after small incision lenticule extraction for potential use in human subjects. Cornea 33:1355–1362

    Article  Google Scholar 

  • Hashimoto Y, Funamoto S, Sasaki S et al (2015) Corneal regeneration by deep anterior lamellar keratoplasty (DALK) using decellularized corneal matrix. PLoS ONE 10:e0131989

    Article  Google Scholar 

  • Hashimoto Y, Hattori S, Sasaki S et al (2016) Ultrastructural analysis of the decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty in a rabbit model. Sci Rep 6:27734

    Article  CAS  Google Scholar 

  • Hjortdal JO, Vestergaard AH, Ivarsen A et al (2012) Predictors for the outcome of small-incision lenticule extraction for Myopia. J Refract Surg 28:865–871

    Article  Google Scholar 

  • Huh MI, Lee KP, Kim J et al (2018) Generation of femtosecond laser-cut decellularized corneal lenticule using hypotonic trypsin-EDTA solution for corneal tissue engineering. J Ophthalmol 2018:2590536

    PubMed  PubMed Central  Google Scholar 

  • Jacob S, Kumar DA, Agarwal A et al (2017) Preliminary evidence of successful near vision enhancement with a new technique: PrEsbyopic Allogenic Refractive Lenticule (PEARL) corneal inlay using a SMILE lenticule. J Refract Surg 33:224–229

    Article  Google Scholar 

  • Komuro A, Hodge DO, Gores GJ et al (1999) Cell death during corneal storage at 4 degrees C. Invest Ophthalmol Vis Sci 40:2827–2832

    CAS  PubMed  Google Scholar 

  • Lambert NG, Chamberlain WD (2017) The structure and evolution of eye banking: a review on eye banks’ historical, present, and future contribution to corneal transplantation. J Biorep Sci Appl Med 5:23–40

    Google Scholar 

  • Lazaridis A, Reinstein DZ, Archer TJ et al (2016) Refractive lenticule transplantation for correction of iatrogenic hyperopia and high astigmatism after LASIK. J Refract Surg 32:780–786

    Article  Google Scholar 

  • Lie JT, Monnereau C, Groeneveld-van Beek EA et al (2015) Dehydration of corneal anterior donor tissue with polyethylene glycol (PEG)-enriched media. Cell Tissue Bank 16:399–409

    Article  CAS  Google Scholar 

  • Lim CH, Riau AK, Lwin NC et al (2013) LASIK following small incision lenticule extraction (SMILE) lenticule re-implantation: a feasibility study of a novel method for treatment of presbyopia. PLoS ONE 8:e83046

    Article  Google Scholar 

  • Liu H, Zhu W, Jiang AC et al (2012) Femtosecond laser lenticule transplantation in rabbit cornea: experimental study. J Refract Surg 28:907–911

    Article  Google Scholar 

  • Liu R, Zhao J, Xu Y et al (2015) Femtosecond laser-assisted corneal small incision allogenic intrastromal lenticule implantation in monkeys: a pilot study. Invest Ophthalmol Vis Sci 56:3715–3720

    Article  CAS  Google Scholar 

  • Liu YC, Teo EPW, Ang HP et al (2018a) Biological corneal inlay for presbyopia derived from small incision lenticule extraction (SMILE). Sci Rep 8:1831

    Article  Google Scholar 

  • Liu YC, Wen J, Teo EPW et al (2018b) Higher-order-aberrations following hyperopia treatment: small incision lenticule extraction, laser-assisted in situ keratomileusis and lenticule implantation. Transl Vis Sci Technol 7:15

    Article  CAS  Google Scholar 

  • Lynch AP, Ahearne M (2013) Strategies for developing decellularized corneal scaffolds. Exp Eye Res 108:42–47

    Article  CAS  Google Scholar 

  • Mastropasqua L, Nubile M (2017) Corneal thickening and central flattening induced by femtosecond laser hyperopic-shaped intrastromal lenticule implantation. Int Ophthalmol 37:893–904

    Article  Google Scholar 

  • Medawar PB (1948) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29:58–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed-Noriega K, Toh KP, Poh R et al (2011) Cornea lenticule viability and structural integrity after refractive lenticule extraction (ReLEx) and cryopreservation. Mol Vis 17:3437–3449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh JY, Kim MK, Lee HJ et al (2009) Comparative observation of freeze–thaw-induced damage in pig, rabbit, and human corneal stroma. Vet Ophthalmol 12:50–56

    Article  Google Scholar 

  • Parekh M, Baruzzo M, Favaro E et al (2017) Standardizing Descemet membrane endothelial keratoplasty graft preparation method in the eye bank-experience of 527 Descemet membrane endothelial keratoplasty tissues. Cornea 36:1458–1466

    Article  Google Scholar 

  • Parekh M, Ruzza A, Romano V et al (2018) Descemet membrane endothelial keratoplasty learning curve for graft preparation in an eye bank using 645 donor corneas. Cornea 37:767–771

    Article  Google Scholar 

  • Pradhan KR, Reinstein DZ, Carp GI et al (2013) Femtosecond laser-assisted keyhole endokeratophakia: correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor. J Refract Surg 29:777–782

    Article  Google Scholar 

  • Riau AK, Angunawela RI, Chaurasia SS et al (2013) Reversible femtosecond laser-assisted myopia correction: a nonhuman primate study of lenticule reimplantation after refractive lenticule extraction. PLoS ONE 8:e67058

    Article  CAS  Google Scholar 

  • Romano V, Levis HJ, Gallon P et al (2019) Biobanking of dehydrated human donor corneal stroma to increase the supply of anterior lamellar grafts. Cornea 38:480–484

    Article  Google Scholar 

  • Sachdev MS, Gupta D, Sachdev G et al (2015) Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea. J Cataract Refract Surg 41:918–923

    Article  Google Scholar 

  • Sekundo W, Kunert KS, Blum M (2011) Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol 95:335–339

    Article  Google Scholar 

  • Shah R, Shah S, Sengupta S (2011) Results of small incision lenticule extraction: all-in-one femtosecond laser refractive surgery. J Cataract Refract Surg 37:127–137

    Article  Google Scholar 

  • Sun L, Yao P, Li M et al (2015) The safety and predictability of implanting autologous lenticule obtained by SMILE for hyperopia. J Refract Surg 31:374–379

    Article  Google Scholar 

  • The EuroGTP II Study Group. http://goodtissuepractices.eu/. Accessed 30th Oct 2019

  • Trias E, Lomas R, Tabera J et al (2019) EuroGTP II: a tool to assess risk, safety and efficacy of substances of human origin. Int J Qual Health Care. https://doi.org/10.1093/intqhc/mzz048

    Article  Google Scholar 

  • Tripathi H, Mehdi MU, Gupta D et al (2016) Long-term preservation of donor corneas in glycerol for keratoplasty: exploring new protocols. Br J Ophthalmol 100:284–290

    Article  Google Scholar 

  • Williams GP, Wu B, Liu YC et al (2018) Hyperopic refractive correction by LASIK, SMILE or lenticule reimplantation in a non-human primate model. PLoS ONE 13:e0194209

    Article  Google Scholar 

  • Wilson SL, Sidney LE, Dunphy SE et al (2013) Keeping an eye on decellularized corneas: a review of methods, characterization and applications. J Funct Biomater 4:114–161

    Article  Google Scholar 

  • Yam GH, Yusoff NZ, Goh TW et al (2016) Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep 6:26339

    Article  CAS  Google Scholar 

  • Zhao J, Sun L, Shen Y et al (2016) Using donor lenticules obtained through SMILE for an epikeratophakia technique combined with phototherapeutic keratectomy. J Refract Surg 32:840–845

    Article  Google Scholar 

  • Zhao J, Shen Y, Tian M et al (2017) Corneal lenticule allotransplantation after femtosecond laser small incision lenticule extraction in rabbits. Cornea 36:222–228

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all EuroGTP II Study Group (Associates and Collaborative Partners and Invited experts) who provided insight and expertise that greatly assisted the EuroGTP II Project. For more details on the Associated Partners and the Collaborative Partners and Invited Experts: http://goodtissuepractices.eu/index.php/partners.

Funding

This work was supported by the European Union’s Health Programme (2014–2020), Grant Agreement Number: 709567—EuroGTP II—HP-PJ-2015. This study represents the views of the authors only and is their sole responsibility; it does not reflect the views of the European Commission and/or the Consumers, Health, Agriculture and Food Executive Agency or any other body of the European Union. The European Commission and the Agency do not accept any responsibility for use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteve Trias.

Ethics declarations

Conflict of interests

Authors declare no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trias, E., Gallon, P., Ferrari, S. et al. Banking of corneal stromal lenticules: a risk-analysis assessment with the EuroGTP II interactive tool. Cell Tissue Bank 21, 189–204 (2020). https://doi.org/10.1007/s10561-020-09813-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-020-09813-8

Keywords

Navigation