Skip to main content

Advertisement

Log in

Molecular Characteristics, Phylogeny and Expression Profile of the PTEN Gene in Goats

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Phosphatase and the tensin homologue deleted on chromosome ten (PTEN) has pleiotropic effects on cell growth, organ development, glucose metabolism and insulin resistance in mammals. In the present study, we investigated the molecular characteristics, phylogeny and expression profile of the PTEN gene in different tissues of Jianzhou Daer goats. In this study, eight different tissues from E90, E135 and D90 female goats were collected to quantify the expression pattern of the PTEN gene using quantitative real-time PCR (qPCR), western blotting and FISH. In addition, the dynamic expression of PTEN was also determined during the differentiation of goat precursor adipose cells. A 1212-bp fragment (accession number MG923848), encoding a 403-amino acid protein with a putative molecular weight of 47.14 kDa, was identified in Jianzhou Daer goats by reverse-transcription polymerase chain reaction (RT-PCR). The phylogenetic tree showed that caprine PTEN had a relatively close relationship with ovine PTEN and bovine PTEN. qPCR revealed that PTEN was highly expressed in the liver, lung and spleen, while the lowest expression levels were observed in muscle tissues (P < 0.05). Moreover, the expression of the PTEN gene showed a decreasing trend during the differentiation of goat precursor adipose cells. RNA in situ hybridization yielded a consistent result with the qPCR data. Indeed, low protein expression was found in psoas major muscle and longissimus dorsi muscle, as well as in kidney and liver. However, PTEN protein was expressed at the highest level in the brain. The expression levels of PTEN mRNA and protein were inconsistent with each other, possibly because of post-transcriptional regulation. The findings obtained in our study lay a foundation for further investigations examining the caprine PTEN gene in embryo and organ development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali IU, Schriml LM, Dean M (1999) Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst 91:1922–1932

    CAS  PubMed  Google Scholar 

  • Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA (2004) The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene 23:8571–8580

    CAS  PubMed  Google Scholar 

  • Campbell RB, Liu F, Ross AH (2003) Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 278:33617–33620

    CAS  PubMed  Google Scholar 

  • Carver DJ, Gaston B, Deronde K, Palmer LA (2007) Akt-mediated activation of HIF-1 in pulmonary vascular endothelial cells by S-nitrosoglutathione. Am J Respir Cell Mol Biol 37:255–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Church JE, Qian J, Kumar S, Black SM, Venema RC, Papapetropoulos A, Fulton DJ (2010) Inhibition of endothelial nitric oxide synthase by the lipid phosphatase PTEN. Vasc Pharmacol 52:191–198

    CAS  Google Scholar 

  • Correia NC, Girio A, Antunes I, Martins LR, Barata JT (2014) The multiple layers of non-genetic regulation of PTEN tumour suppressor activity. Eur J Cancer 50:216–225

    CAS  PubMed  Google Scholar 

  • Covey TM, Edes K, Coombs GS, Virshup DM, Fitzpatrick FA (2010) Alkylation of the tumor suppressor PTEN activates Akt and beta-catenin signaling: a mechanism linking inflammation and oxidative stress with cancer. PLoS ONE 5:e13545

    PubMed  PubMed Central  Google Scholar 

  • Davies EM, Sheffield DA, Tibarewal P, Fedele CG, Mitchell CA, Leslie NR (2012) The PTEN and Myotubularin phosphoinositide 3-phosphatases: linking lipid signalling to human disease. In: Balla T, Wymann M, York J (eds) Phosphoinositides I: Enzymes of Synthesis and Degradation. Subcellular Biochemistry, vol 58. Springer, Dordrecht, pp 281–336

    Google Scholar 

  • Dedes KJ, Wetterskog D, Mendes-Pereira AM, Natrajan R, Lambros MB, Geyer FC, Vatcheva R, Savage K, Mackay A, Lord CJ, Ashworth A, Reis-Filho JS (2010) PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci Transl Med 2:53ra75

    PubMed  Google Scholar 

  • Deng Q, Ma D, Sun G, Yuan X, Wang Z, Liu G (2019) PTEN influences insulin and lipid metabolism in bovine hepatocytes in vitro. J Dairy Res 86(1):73–76

    CAS  PubMed  Google Scholar 

  • Denning G, Jean-Joseph B, Prince C, Durden DL, Vogt PK (2007) A short N-terminal sequence of PTEN controls cytoplasmic localization and is required for suppression of cell growth. Oncogene 26:3930–3940

    CAS  PubMed  Google Scholar 

  • Findley CM, Cudmore MJ, Ahmed A, Kontos CD (2007) VEGF induces Tie2 shedding via a phosphoinositide 3-kinase/Akt dependent pathway to modulate Tie2 signaling. Arterioscler Thromb Vasc Biol 27:2619–2626

    CAS  PubMed  Google Scholar 

  • Frew IJ, Thoma CR, Georgiev S, Minola A, Hitz M, Montani M, Moch H, Krek W (2008) pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation. EMBO J 27:1747–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE (2014) PTEN function: the long and the short of it. Trends Biochem Sci 39:183–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Zhao W, Zhan S, Xiao P, Zhou J, Wang L, Li L, Zhang H, Niu L, Zhong T (2016) Delta-like 1 homolog in capra hircus: molecular characteristics, expression pattern and phylogeny. Mol Biol Rep 43:563–571

    CAS  PubMed  Google Scholar 

  • Ikenoue T, Inoki K, Zhao B, Guan KL (2008) PTEN acetylation modulates its interaction with PDZ domain. Cancer Res 68:6908–6912

    CAS  PubMed  Google Scholar 

  • Kurlawalla-Martinez C, Stiles B, Wang Y, Devaskar SU, Kahn BB, Wu H (2005) Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol Cell Biol 25:2498–2510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323–334

    CAS  PubMed  Google Scholar 

  • Leslie NR, Batty IH, Maccario H, Davidson L, Downes CP (2008) Understanding PTEN regulation: PIP2, polarity and protein stability. Oncogene 27:5464–5476

    CAS  PubMed  Google Scholar 

  • Li DM, Sun H (1997) TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 57:2124–2129

    CAS  PubMed  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    CAS  PubMed  Google Scholar 

  • Li S, Zhu M, Pan R, Fang T, Cao YY, Chen S, Zhao X, Lei CQ, Guo L, Chen Y, Li CM, Jokitalo E, Yin Y, Shu HB, Guo D (2016) The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nat Immunol 17:241–249

    CAS  PubMed  Google Scholar 

  • Lucci MA, Orlandi R, Triulzi T, Tagliabue E, Balsari A, Villa-Moruzzi E (2010) Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Cell Oncol 32:361–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Fan Y, Zhang J, Feng S, Hu Z, Qiu W, Long K, Jin L, Tang Q, Wang X, Zhou Q, Gu Y, Xiao W, Liu L, Li X, Li M (2018) Testosterone-dependent miR-26a-5p and let-7g-5p act as signaling mediators to regulate sperm apoptosis via targeting PTEN and PMAIP1. Int J Mol Sci 19(4):1233

    PubMed Central  Google Scholar 

  • Masliah-Planchon J, Pasmant E, Luscan A, Laurendeau I, Ortonne N, Hivelin M, Varin J, Valeyrie-Allanore L, Dumaine V, Lantieri L, Leroy K, Parfait B, Wolkenstein P, Vidaud M, Vidaud D, Bieche I (2013) MicroRNAome profiling in benign and malignant neurofibromatosis type 1-associated nerve sheath tumors: evidences of PTEN pathway alterations in early NF1 tumorigenesis. BMC Genomics 14:473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim J-S, Waldman T, Lord CJ, Ashworth A (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. Embo Mol Med 1:315–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, Nuzzo CM, Vaccaro V, Vari S, Cognetti F, Ciuffreda L (2015) PTEN: multiple functions in human malignant tumors. Front Oncol 5:24

    PubMed  PubMed Central  Google Scholar 

  • Muroya S, Shibata M, Hayashi M, Oe M, Ojima K (2016) Differences in circulating microRNAs between grazing and grain-fed wagyu cattle are associated with altered expression of intramuscular microRNA, the potential target PTEN, and lipogenic genes. PLoS ONE 11(9):e0162496

    PubMed  PubMed Central  Google Scholar 

  • Network TCGAR (2015) The molecular taxonomy of primary prostate cancer. Cell 163:1011–1025

    Google Scholar 

  • Nguyen K-TT, Tajmir P, Lin CH, Liadis N, Zhu X-D, Eweida M, Tolasa-Karaman G, Cai F, Wang R, Kitamura T, Belsham DD, Wheeler MB, Suzuki A, Mak TW, Woo M (2006) Essential role of Pten in body size determination and pancreatic beta-cell homeostasis in vivo. Mol Cell Biol 26:4511–4518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno K, Okuda K, Uehara T (2015) Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide. Biochem Biophys Res Commun 456:245–249

    CAS  PubMed  Google Scholar 

  • Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133:403–414

    CAS  PubMed  Google Scholar 

  • Sarker D, Reid AH, Yap TA, de Bono JS (2009) Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res 15:4799–4805

    CAS  PubMed  Google Scholar 

  • Shen N, Liu C, Li J, Chen X, Yang Y, Zhu Y, Gong Y, Gong J, Zhong R, Cheng L, Miao X (2015) A phosphorylation-related variant ADD1-rs4963 modifies the risk of colorectal cancer. PLoS ONE 10:e0121485

    PubMed  PubMed Central  Google Scholar 

  • Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13:283–296

    CAS  PubMed  Google Scholar 

  • Sonveaux P, Copetti T, De Saedeleer CJ, Vegran F, Verrax J, Kennedy KM, Moon EJ, Dhup S, Danhier P, Frerart F, Gallez B, Ribeiro A, Michiels C, Dewhirst MW, Feron O (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE 7:e33418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q233 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    CAS  PubMed  Google Scholar 

  • Stiles B, Wang Y, Stahl A, Bassilian S, Lee WP, Kim YJ, Sherwin R, Devaskar S, Lesche R, Magnuson MA, Wu H (2004) Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci USA 101:2082–2087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BL, Kuralwalla-Martinez C, Guo W, Gregorian C, Wang Y, Tian J, Magnuson MA, Wu H (2006) Selective deletion of Pten in pancreatic beta cells leads to increased islet mass and resistance to STZ-induced diabetes. Mol Cell Biol 26:2772–2781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Nakano T, Mak TW, Sasaki T (2008) Portrait of PTEN: messages from mutant mice. Cancer Sci 99:209–213

    CAS  PubMed  Google Scholar 

  • Takaoka K, Yamamoto M, Hamada H (2011) Origin and role of distal visceral endoderm, a group of cells that determines anterior-posterior polarity of the mouse embryo. Nat Cell Biol 13:743–752

    CAS  PubMed  Google Scholar 

  • Takei Y, Saga Y, Mizukami H, Takayama T, Ohwada M, Ozawa K, Suzuki M (2008) Overexpression of PTEN in ovarian cancer cells suppresses i.p. dissemination and extends survival in mice. Mol Cancer Ther 7:704–711

    CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034

    PubMed  PubMed Central  Google Scholar 

  • Vazquez F, Ramaswamy S, Nakamura N, Sellers WR (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20:5010–5018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker SM, Leslie NR, Perera NM, Batty IH, Downes CP (2004) The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem J 379:301–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Worby CA, Dixon JE (2014) PTEN. Annu Rev Biochem 83:641–669

    CAS  PubMed  Google Scholar 

  • Zhang SC, MacDonald KA, Baguma-Nibasheka M, Geldenhuys L, Casson AG, Murphy PR (2008) Alternative splicing and differential subcellular localization of the rat FGF antisense gene product. BMC Mol Biol 9:10

    PubMed  PubMed Central  Google Scholar 

  • Zhang TY, Wu RY, Zhao Y, Xu CS, Zhang WD, Ge W, Liu J, Sun ZY, Zou SH, Shen W (2018a) Ochratoxin A exposure decreased sperm motility via the AMPK and PTEN signaling pathways. Toxicol Appl Pharmacol 340:49–57

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li L, Wang Q, Zhan S, Wang L, Zhong T, Guo J, Zhang H (2018b) Fibroblast growth factor 21 induces lipolysis more efficiently than it suppresses lipogenesis in goat adipocytes. Cytotechnology 70:1423–1433

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFD0502002) and the Chinese Domestic Animal Germplasm Resources Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhong.

Ethics declarations

Conflicts of interest

All authors declared that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, T., Zhou, J., Zhan, S. et al. Molecular Characteristics, Phylogeny and Expression Profile of the PTEN Gene in Goats. Biochem Genet 58, 399–411 (2020). https://doi.org/10.1007/s10528-020-09947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-020-09947-0

Keywords

Navigation