1932

Abstract

Chromatosomes are fundamental units of chromatin structure that are formed when a linker histone protein binds to a nucleosome. The positioning of the linker histone on the nucleosome influences the packing of chromatin. Recent simulations and experiments have shown that chromatosomes adopt an ensemble of structures that differ in the geometry of the linker histone–nucleosome interaction. In this article we review the application of Brownian, Monte Carlo, and molecular dynamics simulations to predict the structure of linker histone–nucleosome complexes, to study the binding mechanisms involved, and to predict how this binding affects chromatin fiber structure. These simulations have revealed the sensitivityof the chromatosome structure to variations in DNA and linker histone sequence, as well as to posttranslational modifications, thereby explaining the structural variability observed in experiments. We propose that a concerted application of experimental and computational approaches will reveal the determinants of chromatosome structural variability and how it impacts chromatin packing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-071119-040043
2020-04-20
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-071119-040043.html?itemId=/content/journals/10.1146/annurev-physchem-071119-040043&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Klug A. 1983. From Macromolecules to Biological Assemblies (Nobel Lecture). Angew. Chem. Int. Ed. 22:8565–82
    [Google Scholar]
  2. 2. 
    Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM 1993. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362:6417219–23
    [Google Scholar]
  3. 3. 
    Zhou B-R, Jiang J, Feng H, Ghirlando R, Xiao TS, Bai Y 2015. Structural mechanisms of nucleosome recognition by linker histones. Mol. Cell 59:4628–38
    [Google Scholar]
  4. 4. 
    Öztürk MA, Cojocaru V, Wade RC 2018. Toward an ensemble view of chromatosome structure: a paradigm shift from one to many. Structure 26:81050–57
    [Google Scholar]
  5. 5. 
    Fyodorov DV, Zhou B-R, Skoultchi AI, Bai Y 2017. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 19:3192–206
    [Google Scholar]
  6. 6. 
    Perišić O, Schlick T. 2016. Computational strategies to address chromatin structure problems. Phys. Biol. 13:35006
    [Google Scholar]
  7. 7. 
    Ozer G, Luque A, Schlick T 2015. The chromatin fiber: multiscale problems and approaches. Curr. Opin. Struct. Biol. 31:124–39
    [Google Scholar]
  8. 8. 
    Korolev N, Fan Y, Lyubartsev AP, Nordenskiöld L 2012. Modelling chromatin structure and dynamics: status and prospects. Curr. Opin. Struct. Biol. 22:151–59
    [Google Scholar]
  9. 9. 
    Biswas M, Langowski J, Bishop TC 2013. Atomistic simulations of nucleosomes. WIREs Comput. Mol. Sci. 3:378–92
    [Google Scholar]
  10. 10. 
    Boulé J-B, Mozziconacci J, Lavelle C 2015. The polymorphisms of the chromatin fiber. J. Phys. Condens. Matter. 27:3033101
    [Google Scholar]
  11. 11. 
    Armeev GA, Gribkova AK, Pospelova I, Komarova GA, Shaytan AK 2019. Linking chromatin composition and structural dynamics at the nucleosome level. Curr. Opin. Struct. Biol. 56:46–55
    [Google Scholar]
  12. 12. 
    Zhou B-R, Bai Y. 2019. Chromatin structures condensed by linker histones. Essays Biochem 63:175–87
    [Google Scholar]
  13. 13. 
    Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE 2012. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41:429–52
    [Google Scholar]
  14. 14. 
    Lee EH, Hsin J, Sotomayor M, Comellas G, Schulten K 2009. Discovery through the computational microscope. Structure 17:101295–306
    [Google Scholar]
  15. 15. 
    Miescher F. 1871. Über die chemische Zusammensetzung der Eiterzellen. Medicinisch-chemische Untersuchungen 4 F Hoppe-Seyler 441–60 Berlin: Hirschwald
    [Google Scholar]
  16. 16. 
    Flemming W. 1882. Zellsubstanz, Kern und Zelltheilung Leipzig, Ger.: F.C.W. Vogel
  17. 17. 
    Olins AL, Olins DE. 1974. Spheroid chromatin units (v bodies). Science 183:4122330–32
    [Google Scholar]
  18. 18. 
    Oudet P, Gross-Bellard M, Chambon P 1975. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4:4281–300
    [Google Scholar]
  19. 19. 
    Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A 1984. Structure of the nucleosome core particle at 7 Å resolution. Nature 311:5986532–37
    [Google Scholar]
  20. 20. 
    Kornberg RD. 1974. Chromatin structure: a repeating unit of histones and DNA. Science 184:139868–71
    [Google Scholar]
  21. 21. 
    Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:6648251–60
    [Google Scholar]
  22. 22. 
    Simpson RT. 1978. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17:255524–31
    [Google Scholar]
  23. 23. 
    Olins AL, Senior MB, Olins DE 1976. Ultrastructural features of chromatin ν bodies. J. Cell Biol. 68:3787–93
    [Google Scholar]
  24. 24. 
    Olins DE, Olins AL. 1978. Nucleosomes: the structural quantum in chromosomes. Am. Sci. 66:6704–11
    [Google Scholar]
  25. 25. 
    Bates DL, Thomas JO. 1981. Histones H1 and H5: one or two molecules per nucleosome. Nucleic Acids Res 9:225883–94
    [Google Scholar]
  26. 26. 
    Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC et al. 1998. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. PNAS 95:2414173–78
    [Google Scholar]
  27. 27. 
    Perišić O, Portillo-Ledesma S, Schlick T 2019. Sensitive effect of linker histone binding mode and subtype on chromatin condensation. Nucleic Acids Res 47:104948–57
    [Google Scholar]
  28. 28. 
    Finch JT, Klug A. 1976. Solenoidal model for superstructure in chromatin. PNAS 73:61897–901
    [Google Scholar]
  29. 29. 
    Thoma F, Koller T, Klug A 1979. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83:2, Part 1403–27
    [Google Scholar]
  30. 30. 
    Schalch T, Duda S, Sargent DF, Richmond TJ 2005. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:7047138–41
    [Google Scholar]
  31. 31. 
    Song F, Chen P, Sun D, Wang M, Dong L et al. 2014. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:6182376–80
    [Google Scholar]
  32. 32. 
    Risca VI, Denny SK, Straight AF, Greenleaf WJ 2017. Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature 541:7636237–41
    [Google Scholar]
  33. 33. 
    Grosberg A, Rabin Y, Havlin S, Neer A 1993. Crumpled globule model of the three-dimensional structure of DNA. EPL 23:5373–78
    [Google Scholar]
  34. 34. 
    Mirny LA. 2011. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 19:137–51
    [Google Scholar]
  35. 35. 
    Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J 2009. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 28:243785–98
    [Google Scholar]
  36. 36. 
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:5950289–93
    [Google Scholar]
  37. 37. 
    Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT et al. 2017. The 4D nucleome project. Nature 549:7671219–26
    [Google Scholar]
  38. 38. 
    Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O'Shea CC 2017. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357:6349eaag0025
    [Google Scholar]
  39. 39. 
    Öztürk MA, Pachov GV, Wade RC, Cojocaru V 2016. Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome. Nucleic Acids Res 44:146599–613
    [Google Scholar]
  40. 40. 
    Izadi S, Anandakrishnan R, Onufriev AV 2016. Implicit solvent model for million-atom atomistic simulations: insights into the organization of 30-nm chromatin fiber. J. Chem. Theory Comput. 12:125946–59
    [Google Scholar]
  41. 41. 
    Martinez M, Bruce NJ, Romanowska J, Kokh DB, Ozboyaci M et al. 2015. SDA 7: a modular and parallel implementation of the simulation of diffusional association software. J. Comput. Chem. 36:211631–45
    [Google Scholar]
  42. 42. 
    Pachov GV, Gabdoulline RR, Wade RC 2011. On the structure and dynamics of the complex of the nucleosome and the linker histone. Nucleic Acids Res 39:125255–63
    [Google Scholar]
  43. 43. 
    Paquet E, Viktor HL. 2015. Molecular dynamics, Monte Carlo simulations, and Langevin dynamics: a computational review. BioMed Res. Int. 2015:183918
    [Google Scholar]
  44. 44. 
    Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ 2010. Polarizable water model for the coarse-grained MARTINI force field. PLOS Comput. Biol. 6:61000810
    [Google Scholar]
  45. 45. 
    Tiwary P, van de Walle A 2016. A review of enhanced sampling approaches for accelerated molecular dynamics. Multiscale Materials Modeling for Nanomechanics CR Weinberger, GJ Tucker 195–221 Cham, Switz: Springer
    [Google Scholar]
  46. 46. 
    Öztürk MA, Cojocaru V, Wade RC 2018. Dependence of chromatosome structure on linker histone sequence and posttranslational modification. Biophys. J. 114:102363–75
    [Google Scholar]
  47. 47. 
    Zhou B-R, Feng H, Kato H, Dai L, Yang Y et al. 2013. Structural insights into the histone H1-nucleosome complex. PNAS 110:4819390–95 Erratum. 2014. PNAS 111(3):1222
    [Google Scholar]
  48. 48. 
    Zhou B-R, Feng H, Ghirlando R, Li S, Schwieters CD, Bai Y 2016. A small number of residues can determine if linker histones are bound on or off dyad in the chromatosome. J. Mol. Biol. 428:203948–59
    [Google Scholar]
  49. 49. 
    Bednar J, Garcia-Saez I, Boopathi R, Cutter AR, Papai G et al. 2017. Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1. Mol. Cell 66:3384–97.e8
    [Google Scholar]
  50. 50. 
    Kowalski A, Pałyga J. 2016. Modulation of chromatin function through linker histone H1 variants. Biol. Cell 108:12339–56
    [Google Scholar]
  51. 51. 
    Millán-Ariño L, Izquierdo-Bouldstridge A, Jordan A 2016. Specificities and genomic distribution of somatic mammalian histone H1 subtypes. Biochim. Biophys. Acta Gene Regul. Mech. 1859:3510–19
    [Google Scholar]
  52. 52. 
    Kim K, Jeong KW, Kim H, Choi J, Lu W et al. 2012. Functional interplay between p53 acetylation and H1.2 phosphorylation in p53-regulated transcription. Oncogene 31:394290–301
    [Google Scholar]
  53. 53. 
    Happel N, Doenecke D, Sekeri-Pataryas KE, Sourlingas TG 2008. H1 histone subtype constitution and phosphorylation state of the ageing cell system of human peripheral blood lymphocytes. Exp. Gerontol. 43:3184–99
    [Google Scholar]
  54. 54. 
    Chubb JE, Rea S. 2010. Core and linker histone modifications involved in the DNA damage response. Genome Stability and Human Diseases HP Nasheuer 17–42 Subcell. Biochem 50 Dordrecht, Neth: Springer
    [Google Scholar]
  55. 55. 
    Papamokos GV, Tziatzos G, Papageorgiou DG, Georgatos SD, Politou AS, Kaxiras E 2012. Structural role of RKS motifs in chromatin interactions: a molecular dynamics study of HP1 bound to a variably modified histone tail. Biophys. J. 102:81926–33
    [Google Scholar]
  56. 56. 
    Collepardo-Guevara R, Portella G, Vendruscolo M, Frenkel D, Schlick T, Orozco M 2015. Chromatin unfolding by epigenetic modifications explained by dramatic impairment of internucleosome interactions: a multiscale computational study. J. Am. Chem. Soc. 137:3210205–15
    [Google Scholar]
  57. 57. 
    Fenley AT, Anandakrishnan R, Kidane YH, Onufriev AV 2018. Modulation of nucleosomal DNA accessibility via charge-altering post-translational modifications in histone core. Epigenet. Chromatin 11:11
    [Google Scholar]
  58. 58. 
    Lakowicz JR. 2006. Principles of Fluorescence Spectroscopy New York: Springer, 3rd ed..
  59. 59. 
    Ngo TTM, Zhang Q, Zhou R, Yodh JG, Ha T 2015. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160:61135–44
    [Google Scholar]
  60. 60. 
    Gansen A, Hieb AR, Böhm V, Tóth K, Langowski J 2013. Closing the gap between single molecule and bulk FRET analysis of nucleosomes. PLOS ONE 8:4e57018
    [Google Scholar]
  61. 61. 
    Ordu O, Lusser A, Dekker NH 2016. Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics. Biophys. Rev. 8:Suppl. 133–49
    [Google Scholar]
  62. 62. 
    Collepardo-Guevara R, Schlick T. 2014. Chromatin fiber polymorphism triggered by variations of DNA linker lengths. PNAS 111:228061–66
    [Google Scholar]
  63. 63. 
    de Jong BE, Brouwer TB, Kaczmarczyk A, Visscher B, van Noort J 2018. Rigid basepair Monte Carlo simulations of one-start and two-start chromatin fiber unfolding by force. Biophys. J. 115:1848–59
    [Google Scholar]
  64. 64. 
    Bharath MMS, Chandra NR, Rao MRS 2003. Molecular modeling of the chromatosome particle. Nucleic Acids Res 31:144264–74
    [Google Scholar]
  65. 65. 
    Fan L, Roberts VA. 2006. Complex of linker histone H5 with the nucleosome and its implications for chromatin packing. PNAS 103:228384–89
    [Google Scholar]
  66. 66. 
    Cui F, Zhurkin VB. 2009. Distinctive sequence patterns in metazoan and yeast nucleosomes: implications for linker histone binding to AT-rich and methylated DNA. Nucleic Acids Res 37:92818–29
    [Google Scholar]
  67. 67. 
    Wong H, Victor J-M, Mozziconacci J 2007. An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length. PLOS ONE 2:9e877
    [Google Scholar]
  68. 68. 
    Ramaswamy A, Ioshikhes I. 2007. Global dynamics of newly constructed oligonucleosomes of conventional and variant H2A.Z histone. BMC Struct. Biol. 7:176
    [Google Scholar]
  69. 69. 
    Stehr R, Kepper N, Rippe K, Wedemann G 2008. The effect of internucleosomal interaction on folding of the chromatin fiber. Biophys. J. 95:83677–91
    [Google Scholar]
  70. 70. 
    Kepper N, Foethke D, Stehr R, Wedemann G, Rippe K 2008. Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Biophys. J. 95:83692–705
    [Google Scholar]
  71. 71. 
    Diesinger PM, Heermann DW. 2008. The influence of the cylindrical shape of the nucleosomes and H1 defects on properties of chromatin. Biophys. J. 94:114165–72
    [Google Scholar]
  72. 72. 
    Diesinger PM, Kunkel S, Langowski J, Heermann DW 2010. Histone depletion facilitates chromatin loops on the kilobasepair scale. Biophys. J. 99:92995–3001
    [Google Scholar]
  73. 73. 
    Arya G, Schlick T. 2009. A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments. J. Phys. Chem. A 113:164045–59
    [Google Scholar]
  74. 74. 
    Schlick T, Perišić O. 2009. Mesoscale simulations of two nucleosome-repeat length oligonucleosomes. Phys. Chem. Chem. Phys. 11:4510729–37
    [Google Scholar]
  75. 75. 
    Grigoryev S, Arya G, Correll S, Woodcock CL, Schlick T 2009. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. PNAS 106:3213317–22
    [Google Scholar]
  76. 76. 
    Gan HH, Schlick T. 2010. Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach. Biophys. J. 99:82587–96
    [Google Scholar]
  77. 77. 
    Perišić O, Collepardo-Guevara R, Schlick T 2010. Modeling studies of chromatin fiber structure as a function of DNA linker length. J. Mol. Biol. 403:5777–802
    [Google Scholar]
  78. 78. 
    Grigoryev SA, Bascom G, Buckwalter JM, Schubert MB, Woodcock CL, Schlick T 2016. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes. PNAS 113:51238–43
    [Google Scholar]
  79. 79. 
    Collepardo-Guevara R, Schlick T. 2011. The effect of linker histone's nucleosome binding affinity on chromatin unfolding mechanisms. Biophys. J. 101:71670–80
    [Google Scholar]
  80. 80. 
    Collepardo-Guevara R, Schlick T. 2012. Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes. Nucleic Acids Res 40:188803–17
    [Google Scholar]
  81. 81. 
    Ozer G, Collepardo-Guevara R, Schlick T 2015. Forced unraveling of chromatin fibers with nonuniform linker DNA lengths. J. Phys. Condens. Matter 27:6064113
    [Google Scholar]
  82. 82. 
    Luque A, Collepardo-Guevara R, Grigoryev S, Schlick T 2014. Dynamic condensation of linker histone C-terminal domain regulates chromatin structure. Nucleic Acids Res 42:127553–60
    [Google Scholar]
  83. 83. 
    Luque A, Ozer G, Schlick T 2016. Correlation among DNA linker length, linker histone concentration, and histone tails in chromatin. Biophys. J. 110:112309–19
    [Google Scholar]
  84. 84. 
    Perišić O, Schlick T. 2017. Dependence of the linker histone and chromatin condensation on the nucleosome environment. J. Phys. Chem. B 121:337823–32
    [Google Scholar]
  85. 85. 
    Bascom GD, Schlick T. 2018. Chromatin fiber folding directed by cooperative histone tail acetylation and linker histone binding. Biophys. J. 114:102376–85
    [Google Scholar]
  86. 86. 
    Bascom G, Schlick T. 2017. Linking chromatin fibers to gene folding by hierarchical looping. Biophys. J. 112:3434–45
    [Google Scholar]
  87. 87. 
    Gorkovets TK, Armeev GA, Shaitan KV, Shaytan AK 2018. Joint effect of histone H1 amino acid sequence and DNA nucleotide sequence on the structure of chromatosomes: analysis by molecular modeling methods. Mosc. Univ. Biol. Sci. Bull. 73:282–87
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-071119-040043
Loading
/content/journals/10.1146/annurev-physchem-071119-040043
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error