Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Paper
Enrichment of Type I Methanotrophs with nirS Genes of Three Emergent Macrophytes in a Eutrophic Wetland in China
Ju-mei LiuZhi-hua BaoWei-wei CaoJing-jing HanJun ZhaoZhen-zhong KangLi-xin WangJi Zhao
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2020 Volume 35 Issue 1 Article ID: ME19098

Details
Abstract

The pmoA gene, encoding particulate methane monooxygenase in methanotrophs, and nirS and nirK genes, encoding bacterial nitrite reductases, were examined in the root and rhizosphere sediment of three common emergent macrophytes (Phragmites australis, Typha angustifolia, and Scirpus triqueter) and unvegetated sediment from eutrophic Wuliangsuhai Lake in China. Sequencing analyses indicated that 334 out of 351 cloned pmoA sequences were phylogenetically the most closely related to type I methanotrophs (Gammaproteobacteria), and Methylomonas denitrificans-like organisms accounted for 44.4% of the total community. In addition, 244 out of 250 cloned nirS gene sequences belonged to type I methanotrophs, and 31.2% of nirS genes were the most closely related to paddy rice soil clone SP-2-12 in Methylomonas of the total community. Three genera of type I methanotrophs, Methylomonas, Methylobacter, and Methylovulum, were common in both pmoA and nirS clone libraries in each sample. A quantitative PCR (qPCR) analysis demonstrated that the copy numbers of the nirS and nirK genes were significantly higher in rhizosphere sediments than in unvegetated sediments in P. australis and T. angustifolia plants. In the same sample, the nirS gene copy number was significantly higher than that of nirK. Furthermore, type I methanotrophs were localized in the root tissues according to catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Thus, nirS-carrying type I methanotrophs were enriched in macrophyte root and rhizosphere sediment and are expected to play important roles in carbon/nitrogen cycles in a eutrophic wetland.

Content from these authors
© 2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles.
Previous article Next article
feedback
Top