Skip to main content
Log in

Deficiency of T-type voltage-gated calcium channels results in attenuated weight gain and improved endothelium-dependent dilatation of resistance vessels induced by a high-fat diet in mice

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The deletion of T-type Cav3.1 channels may reduce high-fat diet (HFD)-induced weight gain, which correlates positively with obesity and endothelial dysfunction. Therefore, experiments were designed to study the involvement of T-type Cav3.1 channels in HFD-induced endothelial dysfunction in mice. Wildtype (WT) and Cav3.1−/− mice were fed either a normal diet (ND) or an HFD for 8 weeks. Body composition was assessed, and thoracic aortae and mesenteric arteries were harvested for myography to assess endothelium-dependent responses. Changes in intracellular calcium were measured by fluorescence imaging, and behavior was assessed with the open-field test. Cav3.1−/− mice had attenuated HFD-induced weight gain and lower total fat mass compared with WT mice. Cav3.1−/− mice on an HFD had reduced plasma cholesterol levels compared with WT mice on the same diet. Increased feeding efficiency, independent of food intake, was observed in WT mice on an HFD compared with an ND, but no difference in feeding efficiency between diets was observed for Cav3.1−/− mice. Nitric oxide-dependent dilatation was increased in mesenteric arteries of Cav3.1−/− mice compared with WT mice on an HFD, with no difference observed in aortae. No differences in mouse locomotor activity were observed between the experimental groups. Mice on an HFD lacking T-type channels have reduced weight gain, lower total cholesterol levels, and increased dilatation of resistance vessels compared with WT mice on an HFD, suggesting that Cav3.1 deletion protects against endothelial dysfunction in resistance vessels but not in large conduit vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ball CJ, Wilson DP, Turner SP, Saint DA, Beltrame JF (2009) Heterogeneity of L- and T-channels in the vasculature: rationale for the efficacy of combined L- and T-blockade. Hypertension 53:654–660. https://doi.org/10.1161/hypertensionaha.108.125831

    Article  PubMed  CAS  Google Scholar 

  2. Du JJ, Fan LM, Mai A, Li JM (2013) Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice. Br J Pharmacol 170:1064–1077. https://doi.org/10.1111/bph.12336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Eisinger K, Liebisch G, Schmitz G, Aslanidis C, Krautbauer S, Buechler C (2014) Lipidomic analysis of serum from high fat diet induced obese mice. Int J Mol Sci 15:2991–3002. https://doi.org/10.3390/ijms15022991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol 15:1983–1992. https://doi.org/10.1097/01.ASN.0000132474.50966.DA

    Article  PubMed  CAS  Google Scholar 

  5. Feletou M, Kohler R, Vanhoutte PM (2012) Nitric oxide: orchestrator of endothelium-dependent responses. Ann Med 44:694–716. https://doi.org/10.3109/07853890.2011.585658

    Article  PubMed  CAS  Google Scholar 

  6. Gennemark P, Jansson-Löfmark R, Hyberg G, Wigstrand M, Kakol-Palm D, Håkansson P, Hovdal D, Brodin P, Fritsch-Fredin M, Antonsson M, Ploj K, Gabrielsson J (2013) A modeling approach for compounds affecting body composition. J Pharmacokinet Pharmacodyn 40:651–667. https://doi.org/10.1007/s10928-013-9337-x

    Article  PubMed  CAS  Google Scholar 

  7. Goodfellow J, Ramsey MW, Luddington LA, Jones CJ, Coates PA, Dunstan F, Lewis MJ, Owens DR, Henderson AH (1996) Endothelium and inelastic arteries: an early marker of vascular dysfunction in non-insulin dependent diabetes. BMJ 312:744–745

    Article  CAS  Google Scholar 

  8. Guo J, Hall KD (2009) Estimating the continuous-time dynamics of energy and fat metabolism in mice. PLoS Comput Biol 5:e1000511. https://doi.org/10.1371/journal.pcbi.1000511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Guo J, Hall KD (2011) Predicting changes of body weight, body fat, energy expenditure and metabolic fuel selection in C57BL/6 mice. PLoS One 6:e15961. https://doi.org/10.1371/journal.pone.0015961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hansen PBL (2015) Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system: news from the world of knockout mice. Am J Physiol-Reg I 308:R227–R237. https://doi.org/10.1152/ajpregu.00276.2014

    Article  CAS  Google Scholar 

  11. Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104:2673–2678. https://doi.org/10.1161/hc4601.099485

    Article  PubMed  CAS  Google Scholar 

  12. Howitt L, Kuo IY, Ellis A, Chaston DJ, Shin H-S, Hansen PB, Hill CE (2013) Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles. Cardiovasc Res 98:449–457. https://doi.org/10.1093/cvr/cvt043

    Article  PubMed  CAS  Google Scholar 

  13. Ketonen J, Pilvi T, Mervaala E (2010) Caloric restriction reverses high-fat diet-induced endothelial dysfunction and vascular superoxide production in C57Bl/6 mice. Heart Vessel 25:254–262. https://doi.org/10.1007/s00380-009-1182-x

    Article  Google Scholar 

  14. Ketonen J, Shi J, Martonen E, Mervaala E (2010) Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57BI/6 mice. Circ J 74:1479–1487. https://doi.org/10.1253/circj.CJ-09-0661

    Article  PubMed  CAS  Google Scholar 

  15. Ketsawatsomkron P, Lorca RA, Keen HL, Weatherford ET, Liu X, Pelham CJ, Grobe JL, Faraci FM, England SK, Sigmund CD (2012) PPARgamma regulates resistance vessel tone through a mechanism involving RGS5-mediated control of protein kinase C and BKCa channel activity. Circ Res 111:1446–1458. https://doi.org/10.1161/CIRCRESAHA.112.271577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca2+ channels. Neuron 31:35–45. https://doi.org/10.1016/S0896-6273(01)00343-9

    Article  PubMed  CAS  Google Scholar 

  17. Kobayasi R, Akamine EH, Davel AP, Rodrigues MAM, Carvalho CRO, Rossoni LV (2010) Oxidative stress and inflammatory mediators contribute to endothelial dysfunction in high-fat diet-induced obesity in mice. J Hypertens 28:2111–2119. https://doi.org/10.1097/HJH.0b013e32833ca68c

    Article  PubMed  CAS  Google Scholar 

  18. Koh K, Quon M, Chung W, Zeon S, Shin E (2007) Efonidipine simultaneously improves blood pressure, endothelial function, and metabolic parameters in patients with hypertension. Eur Heart J 28:865–865

    Article  Google Scholar 

  19. Kraunsoe R, Boushel R, Hansen CN, Schjerling P, Qvortrup K, Stockel M, Mikines KJ, Dela F (2010) Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity. J Physiol 588:2023–2032. https://doi.org/10.1113/jphysiol.2009.184754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lambertsen KL, Gramsbergen JB, Sivasaravanaparan M, Ditzel N, Sevelsted-Møller LM, Oliván-Viguera A, Rabjerg M, Wulff H, Köhler R (2012) Genetic KCa3.1-deficiency produces locomotor hyperactivity and alterations in cerebral monoamine levels. PLoS One 7:e47744. https://doi.org/10.1371/journal.pone.0047744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lin X, Lim IY, Wu Y, Teh AL, Chen L, Aris IM, Soh SE, Tint MT, MacIsaac JL, Morin AM, Yap F, Tan KH, Saw SM, Kobor MS, Meaney MJ, Godfrey KM, Chong YS, Holbrook JD, Lee YS, Gluckman PD, Karnani N, Group Gs (2017) Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome. BMC Med 15:50. https://doi.org/10.1186/s12916-017-0800-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu JTC, Song EF, Xu AM, Berger T, Mak TW, Tse HF, Law IKM, Huang BS, Liang Y, Vanhoutte PM, Wang Y (2012) Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. Br J Pharmacol 165:520–531. https://doi.org/10.1111/j.1476-5381.2011.01587.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lu YJ, Long M, Zhou SW, Xu ZH, Hu FQ, Li M (2014) Mibefradil reduces blood glucose concentration in db/db mice. Clinics 69:61–67. https://doi.org/10.6061/clinics/2014(01)09

    Article  PubMed  PubMed Central  Google Scholar 

  24. Luscher TF, Vanhoutte PM (1986) Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8:344–348. https://doi.org/10.1161/01.hyp.8.4.344

    Article  PubMed  CAS  Google Scholar 

  25. Lynch CM, Kinzenbaw DA, Chen XX, Zhan SS, Mezzetti E, Filosa J, Ergul A, Faulkner JL, Faraci FM, Didion SP (2013) Nox2-derived superoxide contributes to cerebral vascular dysfunction in diet-induced obesity. Stroke 44:3195–3201. https://doi.org/10.1161/Strokeaha.113.001366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. McNally PG, Watt PA, Rimmer T, Burden AC, Hearnshaw JR, Thurston H (1994) Impaired contraction and endothelium-dependent relaxation in isolated resistance vessels from patients with insulin-dependent diabetes mellitus. Clin Sci (Lond) 87:31–36

    Article  CAS  Google Scholar 

  27. Oshima T, Ozono R, Kambe M, Watari Y, Yano Y, Yamamoto Y (2005) Beneficial effect of T-type calcium channel antagonist on endothelial function in patients with essential hypertension. J Hypertens 23:S60–S60

    Google Scholar 

  28. Oshima T, Ozono R, Yano Y, Higashi Y, Teragawa H, Miho N, Ishida T, Ishida M, Yoshizumi M, Kambe M (2005) Beneficial effect of type calcium channel blockers on endothelial function in patients with essential hypertension. Hypertens Res 28:889–894. https://doi.org/10.1291/hypres.28.889

    Article  PubMed  CAS  Google Scholar 

  29. Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323:22–27. https://doi.org/10.1056/NEJM199007053230105

    Article  PubMed  CAS  Google Scholar 

  30. Ploj K, Benthem L, Kakol-Palm D, Gennemark P, Andersson L, Bjursell M, Börjesson J, Kärrberg L, Månsson M, Antonsson M, Johansson A, Iverson S, Carlsson B, Turnbull A, Lindén D (2016) Effects of a novel potent melanin-concentrating hormone receptor 1 antagonist, AZD1979, on body weight homeostasis in mice and dogs. Br J Pharmacol 173:2739–2751. https://doi.org/10.1111/bph.13548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Shearman LP, Camacho RE, Sloan Stribling D, Zhou D, Bednarek MA, Hreniuk DL, Feighner SD, Tan CP, Howard AD, Van der Ploeg LH, MacIntyre DE, Hickey GJ, Strack AM (2003) Chronic MCH-1 receptor modulation alters appetite, body weight and adiposity in rats. Eur J Pharmacol 475:37–47

    Article  CAS  Google Scholar 

  32. Siedlinski M, Nosalski R, Szczepaniak P, Ludwig-Galezowska AH, Mikolajczyk T, Filip M, Osmenda G, Wilk G, Nowak M, Wolkow P, Guzik TJ (2017) Vascular transcriptome profiling identifies Sphingosine kinase 1 as a modulator of angiotensin II-induced vascular dysfunction. Sci Rep 7:44131. https://doi.org/10.1038/srep44131

    Article  PubMed  PubMed Central  Google Scholar 

  33. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 97:2601–2610. https://doi.org/10.1172/JCI118709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Svenningsen P, Andersen K, Thuesen AD, Shin HS, Vanhoutte PM, Skott O, Jensen BL, Hill C, Hansen PBL (2014) T-type Ca2+ channels facilitate NO-formation, vasodilatation and NO-mediated modulation of blood pressure. Pflug Arch Eur J Phy 466:2205–2214. https://doi.org/10.1007/s00424-014-1492-4

    Article  CAS  Google Scholar 

  35. Taddei S, Virdis A, Mattei P, Ghiadoni L, Gennari A, Fasolo CB, Sudano I, Salvetti A (1995) Aging and endothelial function in normotensive subjects and patients with essential hypertension. Circulation 91:1981–1987. https://doi.org/10.1161/01.cir.91.7.1981

    Article  PubMed  CAS  Google Scholar 

  36. Thuesen AD, Andersen H, Cardel M, Toft A, Walter S, Marcussen N, Jensen BL, Bie P, Hansen PBL (2014) Differential effect of T-type voltage-gated Ca2+ channel disruption on renal plasma flow and glomerular filtration rate in vivo. Am J Physiol Renal 307:F445–F452. https://doi.org/10.1152/ajprenal.00016.2014

    Article  CAS  Google Scholar 

  37. Traupe T, Lang M, Ortmann J, Goettsch W, Muenter K, Morawietz H, Vetter W, Barton M (2002) Obesity increases prostanoid-mediated vasoconstriction and vascular thromboxane receptor gene expression. Hypertension 40:581–581

    Google Scholar 

  38. Uebele VN, Gotter AL, Nuss CE, Kraus RL, Doran SM, Garson SL, Reiss DR, Li YX, Barrow JC, Reger TS, Yang ZQ, Ballard JE, Tang CY, Metzger JM, Wang SP, Koblan KS, Renger JJ (2009) Antagonism of T-type calcium channels inhibits high-fat diet-induced weight gain in mice. J Clin Investig 119:1659–1667. https://doi.org/10.1172/Jci36954

    Article  PubMed  CAS  Google Scholar 

  39. Zhou E, Qing D, Li J (2010) Age-associated endothelial dysfunction in rat mesenteric arteries: roles of calcium-activated K+ channels (K-ca). Physiol Res 59:499–508

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Vivi Monrad for expert technical assistance.

Funding

This work was supported by grants from the Novo Nordisk Foundation (13273), the Danish Medical Research Council (11-107552), and the Danish Heart Foundation (11-04-R84-A3492-22663).

Author information

Authors and Affiliations

Authors

Contributions

Conceived of or designed study: PBLH; Performed research: KR, KA, RT, DGE, AR; Analyzed data: KR, KA, RT, PG, DGE, AR, KLL, PMV, PS, PBLH; Contributed new methods or models and wrote the paper: PBLH with input from PS and PMV

Corresponding author

Correspondence to Per Svenningsen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

•Cav3.1 deficiency protects against high fat diet-induced weight gain.

•Cav3.1 deficiency protects against high fat diet-induced endothelial dysfunction.

Electronic supplementary material

ESM 1

(PDF 50 kb)

ESM 2

(PDF 33 kb)

ESM 3

(PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenstand, K., Andersen, K., Terp, R. et al. Deficiency of T-type voltage-gated calcium channels results in attenuated weight gain and improved endothelium-dependent dilatation of resistance vessels induced by a high-fat diet in mice. J Physiol Biochem 76, 135–145 (2020). https://doi.org/10.1007/s13105-020-00728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00728-2

Keywords

Navigation