Skip to main content

Advertisement

Log in

Metal-free visible-light-mediated organophotoredox catalysis: synthesis of 3-functionalized indole via C–C, C–N bond formation

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A visible-light-mediated, mild and one-pot three-component reaction in the presence of organophotoredox catalyst Eosin Y using EtOH:H2O as reaction medium for the synthesis of 3-functionalized indole derivatives was developed. Visible light used in the protocol is green, inexpensive, readily available energy source. The sustainable reagents make the protocol compatible with green chemistry demands.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3

References

  1. Vollhardt KPC, Eichberg MJ (2004) The synthesis of (±)-strychnine via a cobalt mediated [2 + 2 + 2] cycloaddition. In: Harmata M (ed) Strategies and tactics in organic synthesis, vol 4. Academic Press, New York, p 365

    Google Scholar 

  2. Nair V, Biju AT, Mathew SC, Babu BP (2008) Carbon–nitrogen bond-forming reactions of dialkyl azodicarboxylate: a promising synthetic strategy. Chem Asian J 3:810

    Article  CAS  Google Scholar 

  3. Shen Z, Yang P, Tang Y (2016) Transition metal-free visible light-driven photoredox oxidative annulation of arylamidines. J Org Chem 81:309–317

    Article  CAS  Google Scholar 

  4. Roth HD (1989) The beginnings of organic photochemistry. Angew Chem Int Ed Engl 28:1193

    Article  Google Scholar 

  5. Yoon TP, Ischay MA, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527

    Article  CAS  Google Scholar 

  6. Cao MY, Ren X, Lu Z (2015) Olefin difunctionalizations via visible light photocatalysis. Tetrahedron Lett 56:3732

    Article  CAS  Google Scholar 

  7. Narayanam JMR, Stephenson CRJ (2011) Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev 40:102

    Article  CAS  Google Scholar 

  8. Sagir H, Rai P, Ibad A, Ibad F, Siddiqui IR (2017) Visible-light-photoredox catalytic C-C, C-N bond formation: synthesis of pyrazole derivatives via radical ions. Catal Commun 100:153–156

    Article  CAS  Google Scholar 

  9. Festa Alexey A, Voskressensky Leonid G, der Eycken Van, Erik V (2019) Visible light-mediated chemistry of indoles and related heterocycles. Chem Soc Rev 48:4401–4423

    Article  CAS  Google Scholar 

  10. Kim S, Toste FD (2019) Mechanism of photoredox-Initiated C–C and C–N bond formation by arylation of IPrAu(I)–CF3 and IPrAu(I)–succinimide. J Am Chem Soc 141:4308–4315

    Article  CAS  Google Scholar 

  11. Zeitler K (2009) Photoredox catalysis with visible light. Angew Chem Int Ed 48:9785

    Article  CAS  Google Scholar 

  12. Konieczynska MD, Dai C, Stephenson CR (2012) Synthesis of symmetric anhydrides using visible light-mediated photoredox catalysis. Org Biomol Chem 10:4509

    Article  CAS  Google Scholar 

  13. Nicewicz DA, MacMillan DWC (2008) Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322:77

    Article  CAS  Google Scholar 

  14. Hari DP, Konig B (2014) Synthetic applications of eosin Y in photoredox catalysis. Chem Commun 50:6688–6699

    Article  CAS  Google Scholar 

  15. Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322

    Article  CAS  Google Scholar 

  16. Keshari T, Yadav VK, Srivastava VP, Yadav LDS (2014) Visible light organophotoredox catalysis: a general approach to β-keto sulfoxidation of alkenes. Green Chem 16:3986

    Article  CAS  Google Scholar 

  17. Somei M, Yamada F (2005) Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat Prod Rep 22:73

    Article  CAS  Google Scholar 

  18. Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103:893

    Article  CAS  Google Scholar 

  19. Suzen S, Buyukbingol E (2000) Anti-cancer activity studies of indolalthiohydantoin (PIT) on certain cancer cell lines. Farmaco 55:246–248

    Article  CAS  Google Scholar 

  20. Suzen S, Buyukbingol E (1998) Evaluation of anti-HIV activity of 5-(2-phenyl-3′-indolal)-2-thiohydantoin. Farmaco 53:525–527

    Article  CAS  Google Scholar 

  21. Büyükbingöl E, Süzen S, Klopman G (1994) 1994 Studies on the synthesis and structure-activity relationships of 5-(3′-indolal)-2-thiohydantoin derivatives as aldose reductase enzyme inhibitors. Farmaco 49:443–447

    PubMed  Google Scholar 

  22. Giagoudakis G, Markantonis SL (2005) Relationships between the concentrations of prostaglandins and the nonsteroidal anti-inflammatory drugs indomethacin, diclofenac, and ibuprofen. Pharmacotherapy 25:18–25

    Article  CAS  Google Scholar 

  23. Walter G, Liebl R, von Angerer E (2004) 2-Phenylindole sulfamates: inhibitors of steroid sulfatase with antiproliferative activity in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 88:409–420

    Article  CAS  Google Scholar 

  24. Ge X, Yannai S, Rennert G, Gruener N, Fares FA (1996) 3,3′-Diindolymethane induces apoptosis in human cancer cells. Biochem Biophys Res Commun 228:153–158

    Article  CAS  Google Scholar 

  25. Lin W, Zheng Y-X, Xun Z, Huang Z-B, Shi D-Q (2017) Microwave-assisted regioselective synthesis of 3-functionalized indole derivatives via three-component domino reaction. Am Chem Soc. https://doi.org/10.1021/acscombsci.7b00126

    Article  Google Scholar 

  26. Bajtos B, Yu M, Zhao HD, Pagenkopf BL (2007) C-2/C-3 annulation and C-2 alkylation of indoles with 2-alkoxycyclopropanoate esters. J Am Chem Soc 129:9631

    Article  CAS  Google Scholar 

  27. Zhang GZ, Huang XG, Li GT, Zhang LM (1814) Au-containing all-carbon 1,4-dipoles: generation and [4 + 2] annulation in the formation of carbo-/heterocycles. J Am Chem Soc 2008:130

    Google Scholar 

  28. Trost BM, Quancard J (2006) Palladium-catalyzed enantioselective C-3 allylation of 3-substituted-1H-indoles using trialkylboranes. J Am Chem Soc 128:6314

    Article  CAS  Google Scholar 

  29. Kuwano R, Sato K, Kurokawa T, Karube D, Ito Y (2000) Catalytic asymmetric hydrogenation of heteroaromatic compounds, indoles. J Am Chem Soc 122:7614

    Article  CAS  Google Scholar 

  30. Duong HA, Chua S, Huleatt PB, Chai CLL (2008) Synthesis of biindolyls via palladium-catalyzed reactions. J Org Chem 73:9177

    Article  CAS  Google Scholar 

  31. Li Y, Wang WH, Yang SD, Li BJ, Feng C, Shi ZJ (2010) Oxidative dimerization of N-protected and free indole derivatives toward 3,3′-biindoles via Pd-catalyzed direct C–H transformations. Chem Commun 46:4553

    Article  CAS  Google Scholar 

  32. Liang ZJ, Zhao JL, Zhang YH (2010) Palladium-catalyzed regioselective oxidative coupling of indoles and one-pot synthesis of acetoxylated biindolyls. J Org Chem 75:170

    Article  CAS  Google Scholar 

  33. Saito A, Kanno A, Hanzawa Y (2007) Synthesis of 2,3-disubstituted indoles by a rhodium-catalyzed aromatic amino-claisen rearrangement of N-propargyl anilines. Angew Chem Int Ed 46:3931–3933

    Article  CAS  Google Scholar 

  34. Tan Y, Hartwig JF (2010) Palladium-catalyzed amination of aromatic C–H bonds with oxime esters. J Am Chem Soc 132:3676–3677

    Article  CAS  Google Scholar 

  35. Sun K, Liu S, Bec PM, Driver TG (2011) Rhodium-catalyzed synthesis of 2, 3-disubstituted indoles from β, β-disubstituted stryryl azides. Angew Chem Int Ed 50:1702–1706

    Article  CAS  Google Scholar 

  36. Yadav N, Yadav VB, Ansari MD, Sagir H, Verma A, Siddiqui IR (2019) Catalyst-free synthesis of 2,3-dihydro-1,5-benzothiazepines in a renewable and biodegradable reaction medium. New J Chem 43:7011–7014

    Article  CAS  Google Scholar 

  37. Mishra A, Rai P, Srivastava M, Tripathi BP, Yadav S, Singh J, Singh J (2017) A peerless aproach: organophotoredox/Cu (I) catalyzed, regioselective, visible light facilitated, click synthesis of 1,2,3-Triazoles via azide-alkyne [3 + 2] cycloaddition. Catal Lett 147:2600–2611

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge SAIF, Punjab University Chandigarh for providing all the spectroscopic and analytical data. M.D. Ansari acknowledges CSTUP (Project sanction letter No. CST/D- 2276) for the financial support. N. Yadav, S. Tiwari and Vijay B. Yadav are grateful to CSIR, New Delhi for the Senior Research Fellowship (SRF). Ankit Verma and Saif Ansari acknowledge UGC, New Delhi for the Junior Research Fellowship (JRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Siddiqui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Ansari, M.D., Yadav, V.B. et al. Metal-free visible-light-mediated organophotoredox catalysis: synthesis of 3-functionalized indole via C–C, C–N bond formation. Mol Divers 25, 1103–1109 (2021). https://doi.org/10.1007/s11030-020-10044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10044-y

Keywords

Navigation