Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Impacts of Dietary Protein from Fermented Cottonseed Meal on Lipid Metabolism and Metabolomic Profiling in the Serum of Broilers

Author(s): Cunxi Nie, Yongqiang Wang, Yanfeng Liu, Jiancheng Liu, Wenxia Ge, Xi Ma and Wenju Zhang*

Volume 21, Issue 8, 2020

Page: [812 - 820] Pages: 9

DOI: 10.2174/1389203721666200203152643

Price: $65

Abstract

Dietary protein from fermented cottonseed meal (FCSM), widely used in poultry diets in China, had regulating effects on lipid metabolism. To understand the effects of FCSM on lipid metabolism in broilers, we analyzed the biochemical indexes, enzyme activity, hormone level and metabolites in serum responses to FCSM intake. One hundred and eighty 21-d-old Chinese yellow feathered broilers (536.07±4.43 g) were randomly divided into 3 groups with 6 replicates and 3 diets with 6 % supplementation of unfermented CSM (control group), FCSM by C. Tropicalis (Ct CSM) or C. tropicalis plus S. Cerevisae (Ct-Sc CSM). Result showed that: (1) FCSM intake decreased significantly the content of triglyceride (TAG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (P<0.05) in serum; (2) FCSM intake could significantly increase enzyme activity of acetyl CoA carboxylase (ACC), lipoprotein lipase (LPL), fatty acid synthase (FAS) and hormone sensitive lipase (HSL) (P<0.05); (3) Ct-Sc CSM intake increased significantly the levels of adiponectin (ADP) (P<0.05); (4) FCSM intake caused significant metabolic changes involving glycolysis, TCA cycle, synthesis of fatty acid and glycogen, and metabolism of glycerolipid, vitamins B group and amino acids. Our results strongly suggested that FCSM intake could significantly affect lipid metabolism via multiple pathways. These findings provided new essential information about the effect of FCSM on broilers and demonstrated the great potential of nutrimetabolomics, through which the research complex nutrients are included in animal diet.

Keywords: Fermented cottonseed meal, lipid metabolism, broiler chicken, metabolomics, GC-TOF/MS, triglyceride.

Graphical Abstract
[1]
Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep., 2017, 7, 43412.
[http://dx.doi.org/10.1038/srep43412] [PMID: 28252026]
[2]
Nie, C.X.; Zhang, W.J.; Wang, Y.Q.; Liu, Y.F.; Ge, W.X.; Liu, J.C. Tissue lipid metabolism and hepatic metabolomic profiling in response to supplementation of fermented cottonseed meal in the diets of broiler chickens. J. Zhejiang Univ. Sci. B, 2015, 16(6), 447-455.
[http://dx.doi.org/10.1631/jzus.B1400255] [PMID: 26055906]
[3]
Nie, C.X.; Zhang, W.J.; Ge, W.X.; Wang, Y.Q.; Liu, Y.F.; Liu, J.C. Effects of fermented cottonseed meal on the growth performance, apparent digestibility, carcass traits, and meat composition in yellow-feathered broilers. Turk. J. Vet. Anim. Sci., 2015, 39(3), 350-356.
[http://dx.doi.org/10.3906/vet-1410-65]
[4]
Tang, J.W.; Sun, H.; Yao, X.H.; Wu, Y.F.; Wang, X.; Feng, J. Effects of replacement of soybean meal by fermented cottonseed meal on growth performance, serum biochemical parameters and immune function of yellow-feathered broilers. Asian-Australas. J. Anim. Sci., 2012, 25(3), 393-400.
[http://dx.doi.org/10.5713/ajas.2011.11381] [PMID: 25049578]
[5]
Jazi, V.; Boldaji, F.; Dastar, B.; Hashemi, S.R.; Ashayerizadeh, A. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. Br. Poult. Sci., 2017, 58(4), 402-408.
[http://dx.doi.org/10.1080/00071668.2017.1315051] [PMID: 28398088]
[6]
Sun, H.; Tang, J.W.; Fang, C.L.; Yao, X.H.; Wu, Y.F.; Wang, X.; Feng, J. Molecular analysis of intestinal bacterial microbiota of broiler chickens fed diets containing fermented cottonseed meal. Poult. Sci., 2013, 92(2), 392-401.
[http://dx.doi.org/10.3382/ps.2012-02533] [PMID: 23300306]
[7]
Weng, X.Y.; Sun, J.Y. Biodegradation of free gossypol by a new strain of Candida tropicalis under solid state fermentation: effects of fermentation parameters. Process Biochem., 2006, 41, 1663-1668.
[http://dx.doi.org/10.1016/j.procbio.2006.03.015]
[8]
Zhang, W.J.; Xu, Z.R.; Zhao, S.H.; Sun, J.Y.; Yang, X. Development of a microbial fermentation process for detoxification of gossypol in cottonseed meal. Anim. Feed Sci. Technol., 2007, 135(1-2), 176-186.
[http://dx.doi.org/10.1016/j.anifeedsci.2006.06.003]
[9]
Zhang, Y.; Zhang, Z.; Dai, L.; Liu, Y.; Cheng, M.; Chen, L. Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis. Asian-Australas. J. Anim. Sci., 2018, 31(1), 63-70.
[http://dx.doi.org/10.5713/ajas.17.0018] [PMID: 28728360]
[10]
Sun, H.; Tang, J.W.; Yao, X.H.; Wu, Y.F.; Feng, J. Improvement of the nutritional quality of cottonseed meal by bacillus subtilis and the addition of papain. Int. J. Agric. Biol., 2012, 14(4), 563-568.
[11]
Wen, C.; Yan, W.; Sun, C.; Ji, C.; Zhou, Q.; Zhang, D.; Zheng, J.; Yang, N. The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME J., 2019, 13(6), 1422-1436.
[http://dx.doi.org/10.1038/s41396-019-0367-2] [PMID: 30728470]
[12]
Liu, X.; Cao, G.; Zhou, J.; Yao, X.; Fang, B. The effects of Bacillus coagulans-fermented and non-fermented Ginkgo biloba on abdominal fat deposition and meat quality of Peking duck. Poult. Sci., 2017, 96(7), 2264-2273.
[http://dx.doi.org/10.3382/ps/pex017] [PMID: 28204698]
[13]
Aluwong, T.; Hassan, F.; Dzenda, T.; Kawu, M.; Ayo, J. Effect of different levels of supplemental yeast on body weight, thyroid hormone metabolism and lipid profile of broiler chickens. J. Vet. Med. Sci., 2013, 75(3), 291-298.
[http://dx.doi.org/10.1292/jvms.12-0368] [PMID: 23100117]
[14]
Liu, X.; Locasale, J.W. Metabolomics: a primer. Trends Biochem. Sci., 2017, 42(4), 274-284.
[http://dx.doi.org/10.1016/j.tibs.2017.01.004] [PMID: 28196646]
[15]
Sébédio, J.L. Metabolomics, nutrition, and potential biomarkers of food quality, intake, and health status. Adv. Food Nutr. Res., 2017, 82, 83-116.
[http://dx.doi.org/10.1016/bs.afnr.2017.01.001] [PMID: 28427537]
[16]
Ruiz-Aracama, A.; Lommen, A.; Huber, M.; van de Vijver, L.; Hoogenboom, R. Application of an untargeted metabolomics approach for the identification of compounds that may be responsible for observed differential effects in chickens fed an organic and a conventional diet. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2012, 29(3), 323-332.
[PMID: 22220906]
[17]
Mu, C.; Yang, Y.; Yu, K.; Yu, M.; Zhang, C.; Su, Y.; Zhu, W. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics. Amino Acids, 2017, 49(4), 771-781.
[http://dx.doi.org/10.1007/s00726-017-2379-4] [PMID: 28101652]
[18]
Soumeh, E.A.; Hedemann, M.S.; Poulsen, H.D.; Corrent, E.; van Milgen, J.; Nørgaard, J.V. Nontargeted LC-MS metabolomics approach for metabolic profiling of plasma and urine from pigs fed branched chain amino acids for maximum growth performance. J. Proteome Res., 2016, 15(12), 4195-4207.
[http://dx.doi.org/10.1021/acs.jproteome.6b00184] [PMID: 27704848]
[19]
Zhao, S.; Zhao, J.; Bu, D.; Sun, P.; Wang, J.; Dong, Z. Metabolomics analysis reveals large effect of roughage types on rumen microbial metabolic profile in dairy cows. Lett. Appl. Microbiol., 2014, 59(1), 79-85.
[http://dx.doi.org/10.1111/lam.12247] [PMID: 24617926]
[20]
Wei, X.; Yin, Q.; Zhao, H.; Cao, Y.; Cai, C.; Yao, J. Metabolomics for the effect of biotin and nicotinamide on transition dairy cows. J. Agric. Food Chem., 2018, 66(22), 5723-5732.
[http://dx.doi.org/10.1021/acs.jafc.8b00421] [PMID: 29758980]
[21]
An, Y.; Xu, W.; Li, H.; Lei, H.; Zhang, L.; Hao, F.; Duan, Y.; Yan, X.; Zhao, Y.; Wu, J.; Wang, Y.; Tang, H. High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. J. Proteome Res., 2013, 12(8), 3755-3768.
[http://dx.doi.org/10.1021/pr400398b] [PMID: 23746045]
[22]
Ji, B.; Ernest, B.; Gooding, J.R.; Das, S.; Saxton, A.M.; Simon, J.; Dupont, J.; Métayer-Coustard, S.; Campagna, S.R.; Voy, B.H. Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting. BMC Genomics, 2012, 13(1), 441.
[http://dx.doi.org/10.1186/1471-2164-13-441] [PMID: 22938590]
[23]
Park, J.A.; Tirupathi Pichiah, P.B.; Yu, J.J.; Oh, S.H.; Daily, J.W., III; Cha, Y.S. Anti-obesity effect of kimchi fermented with Weissella koreensis OK1-6 as starter in high-fat diet-induced obese C57BL/6J mice. J. Appl. Microbiol., 2012, 113(6), 1507-1516.
[http://dx.doi.org/10.1111/jam.12017] [PMID: 22978326]
[24]
Cha, Y.S.; Kim, S.R.; Yang, J.A.; Back, H.I.; Kim, M.G.; Jung, S.J.; Song, W.O.; Chae, S.W. Kochujang, fermented soybean-based red pepper paste, decreases visceral fat and improves blood lipid profiles in overweight adults. Nutr. Metab. (Lond.), 2013, 10(1), 24.
[http://dx.doi.org/10.1186/1743-7075-10-24] [PMID: 23442518]
[25]
Zhao, X.; Guo, Y.; Guo, S.; Tan, J. Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl. Microbiol. Biotechnol., 2013, 97(14), 6477-6488.
[http://dx.doi.org/10.1007/s00253-013-4970-2] [PMID: 23666481]
[26]
Guo, P.; Li, Y.; Eslamfam, S.; Ding, W.; Ma, X. Discovery of novel genes mediating glucose and lipid metabolisms. Curr. Protein Pept. Sci., 2017, 18(6), 609-618.
[http://dx.doi.org/10.2174/1389203717666160627084304] [PMID: 27356932]
[27]
He, T.; He, L.; Gao, E.; Hu, J.; Zang, J.; Wang, C.; Zhao, J.; Ma, X. Fat deposition deficiency is critical for the high mortality of pre-weanling newborn piglets. J. Anim. Sci. Biotechnol., 2018, 9, 66.
[http://dx.doi.org/10.1186/s40104-018-0280-y] [PMID: 30155244]
[28]
Lei, M.M.; Wu, S.Q.; Li, X.W.; Wang, C.L.; Chen, Z.; Shi, Z.D. Leptin receptor signaling inhibits ovarian follicle development and egg laying in chicken hens. Reprod. Biol. Endocrinol., 2014, 12, 25.
[http://dx.doi.org/10.1186/1477-7827-12-25] [PMID: 24650216]
[29]
Ganguly, R.; Schram, K.; Fang, X.; Kim, M.; Rodrigues, B.; Thong, F.S.; Sweeney, G. Adiponectin increases LPL activity via RhoA/ROCK-mediated actin remodelling in adult rat cardiomyocytes. Endocrinology, 2011, 152(1), 247-254.
[http://dx.doi.org/10.1210/en.2010-0530] [PMID: 21147877]
[30]
Johnson, E.A. Biotechnology of non-Saccharomyces yeasts--the ascomycetes. Appl. Microbiol. Biotechnol., 2013, 97(2), 503-517.
[http://dx.doi.org/10.1007/s00253-012-4497-y] [PMID: 23184219]
[31]
Liu, Y.; Wang, W.; Shui, G.; Huang, X. CDP-diacylglycerol synthetase coordinates cell growth and fat storage through phosphatidylinositol metabolism and the insulin pathway. PLoS Genet., 2014, 10(3)e1004172
[http://dx.doi.org/10.1371/journal.pgen.1004172] [PMID: 24603715]
[32]
Siudeja, K.; Grzeschik, N.A.; Rana, A.; de Jong, J.; Sibon, O.C. Cofilin/Twinstar phosphorylation levels increase in response to impaired coenzyme a metabolism. PLoS One, 2012, 7(8)e43145
[http://dx.doi.org/10.1371/journal.pone.0043145] [PMID: 22912811]
[33]
Minto, C.; Vecchio, M.G.; Lamprecht, M.; Gregori, D. Definition of a tolerable upper intake level of niacin: a systematic review and meta-analysis of the dose-dependent effects of nicotinamide and nicotinic acid supplementation. Nutr. Rev., 2017, 75(6), 471-490.
[http://dx.doi.org/10.1093/nutrit/nux011] [PMID: 28541582]
[34]
Martin, S.A.; Brash, A.R.; Murphy, R.C. The discovery and early structural studies of arachidonic acid. J. Lipid Res., 2016, 57(7), 1126-1132.
[http://dx.doi.org/10.1194/jlr.R068072] [PMID: 27142391]
[35]
Torrecillas, S.; Betancor, M.B.; Caballero, M.J.; Rivero, F.; Robaina, L.; Izquierdo, M.; Montero, D. Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: effects on growth performance, tissue fatty acid profile and lipid metabolism. Fish Physiol. Biochem., 2018, 44(1), 283-300.
[http://dx.doi.org/10.1007/s10695-017-0433-5] [PMID: 29098469]
[36]
Santos, M.P.; França, S.A.; Santos, J.T.; Buzelle, S.L.; Bertolini, G.L.; Garófalo, M.A.; Kettelhut, I.C.; Frasson, D.; Chaves, V.E.; Kawashita, N.H. A low-protein, high-carbohydrate diet increases fatty acid uptake and reduces norepinephrine-induced lipolysis in rat retroperitoneal white adipose tissue. Lipids, 2012, 47(3), 279-289.
[http://dx.doi.org/10.1007/s11745-011-3648-8] [PMID: 22228227]
[37]
Wang, Y.; Zhang, W.; Nie, C.; Chen, C.; Zhang, X.; Hu, J. Evaluation of sample extracting methods of FCSM by Lactobacillus acidophilus based on a UPLC-Q-TOF-MS global metabolomics analysis. Braz. J. Microbiol., 2018, 49(2), 392-400.
[http://dx.doi.org/10.1016/j.bjm.2017.08.008] [PMID: 29154014]
[38]
Ma, N.; Ma, X. Dietary amino acids and the gut-microbiome-immune axis: Physiological metabolism and therapeutic Prospects. Compr. Rev. Food Sci. Food Saf., 2019, 18(1), 221-242.
[http://dx.doi.org/10.1111/1541-4337.12401]
[39]
Huang, C.; Song, P.; Fan, P.; Hou, C.; Thacker, P.; Ma, X. Dietary sodium butyrate decreased postweaning diarrhea by modulating intestinal permeability and changing the bacterial community in weaned piglets. J. Nutr., 2015, 145(12), 2774-2780.
[http://dx.doi.org/10.3945/jn.115.217406] [PMID: 26491121]
[40]
Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A double-edged sword for health? Adv. Nutr., 2018, 9(1), 21-29.
[http://dx.doi.org/10.1093/advances/nmx009] [PMID: 29438462]
[41]
Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci., 2018, 19(4), 954.
[http://dx.doi.org/10.3390/ijms19040954] [PMID: 29570613]
[42]
Chen, J.; Li, Y.; Tian, Y.; Huang, C.; Li, D.; Zhong, Q.; Ma, X. Interaction between microbes and host intestinal health: modulation by dietary nutrients and gut-brain-endocrine-immune axis. Curr. Protein Pept. Sci., 2015, 16(7), 592-603.
[http://dx.doi.org/10.2174/1389203716666150630135720] [PMID: 26122779]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy