Skip to main content
Log in

Fonsecaea pedrosoi Conidia Induces Activation of Dendritic Cells and Increases CD11c+ Cells in Regional Lymph Nodes During Experimental Chromoblastomycosis

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The chromoblastomycosis is a subcutaneous mycosis with a high morbidity rate, Fonsecaea pedrosoi being the largest etiologic agent of this mycosis, usually confined to the skin and subcutaneous tissues. Rarely people get the cure, because the therapies shown to be deficient and few studies report the host–parasite relationship. Dendritic cells (DCs) are specialized in presenting antigens to naïve T lymphocytes inducing primary immune responses. Therefore, we propose to study the migratory capacity of DCs after infection with conidia of F. pedrosoi. The phenotype of DCs was evaluated using cells obtained from footpad and lymph nodes of BALB/c mice after 12, 24 and 72 h of infection. After 24 and 72 h of infection, we found a significant decrease in DCs in footpad and a significant increase in the lymph nodes after 72 h. The expression of surface markers and co-stimulatory molecules were reduced in cells obtained from footpad. To better assess the migratory capacity of DCs migration from footpad, CFSE-stained conidia were injected subcutaneously. We found that after 12 and 72 h, CD11c+ cells were increased in regional lymph nodes, leading us to believe that DCs (CD11c+) were able to phagocytic conidia present in footpad and migrated to regional lymph nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ameen M. Chromoblastomycosis: clinical presentation and management. Clin Exp Dermatol. 2009;34:849–54.

    Article  CAS  Google Scholar 

  2. Krzysciak PM, Pindycka-Piaszczynska M, Piaszczynski M. Chromoblastomycosis. Postep Derm Alegol. 2014;5:310–21.

    Google Scholar 

  3. Queiroz-Telles F, Esterre P, Perez-Blanco M, Vitale RG, Salgado CG, Bonifaz A. Chromoblastomycosis: an overview of clinical manifestations, diagnosis and treatment. Med Mycol. 2009;49:3–15.

    Article  Google Scholar 

  4. Ajello L. The gamut of human infections caused by dematiaceous fungi. Japanese J Med Mycol. 1981;22:1–5.

    Article  Google Scholar 

  5. Castro LGM, de Andrade TS. Chromoblastomycosis: still a therapeutic challenge. Expert Rev Dermatol. 2010;5:433–43.

    Article  Google Scholar 

  6. Schwartz R, Baran E. Chromoblastomycosis e-medicine from WebMD. 2010. Available: http://emedicine.medscape.com/article/1092695-overview.

  7. D’Avila SCGP, Pagliari C, Duarte MIS. The cell-mediated immune reaction in the cutaneous lesion of chromoblastomycosis and their correlation with different clinical forms of the disease. Mycopathologia. 2002;156:51–60.

    Article  Google Scholar 

  8. Gauthier GM. Dimorphism in fungal pathogens of mammals, plants, and insects. Plos Pathogen. 2015;11(2):e1004608.

    Article  Google Scholar 

  9. Esterre P, Ravisse P, Plyrol S, et al. Immunopathologie de la lesion cutanee de chromomycose. J Mycol Med. 1991;1:201.

    Google Scholar 

  10. Sotto MN, De Brito T, Maria A, Silva G, Vidal M, Castro LGM. Antigen distribution and antigen-presenting cells in skin biopsies of human chromoblastomycosis. J Cutan Pathol. 2004;31:14–8.

    Article  Google Scholar 

  11. Klechevsky E, Kato H, Sponaas A-M. Dendritic cells star in Vancouver. JEM. 2005;202:5–10.

    Article  CAS  Google Scholar 

  12. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med J Exp. 2003;197:823–9.

    Article  CAS  Google Scholar 

  13. Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen presentation and t cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20:621–67.

    Article  CAS  Google Scholar 

  14. Newman SL, Holly A. Candida albicans is phagocytosed, killed, and processed for antigen presentation by human dendritic cells. Infect Immun. 2001;69:6813–22.

    Article  CAS  Google Scholar 

  15. Bozza S, Gaziano R, Spreca A, Bacci A, Montagnoli C, di Francesco, Romani L. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol. 2002;168(3):1362–71.

    Article  CAS  Google Scholar 

  16. Sousa MG, Eid E, Ghosn B, Nascimento RC, Bomfim GF, Noal V, et al. Monocyte-derived dendritic cells from patients with severe forms of chromoblastomycosis induce CD4 T cell activation in vitro. Clin Exp Immunol. 2009;156:117–25.

    Article  CAS  Google Scholar 

  17. Gonzalez-Juarrero M, Orme IM. Characterization of murine lung dendritic cells infected with Mycobaterium tuberculosis. Infect Immunol. 2001;69:1127.

    Article  CAS  Google Scholar 

  18. Li JLY, Ng GL. Peeking into the secret life of neutrophils. Immunol Res. 2012;53:168–81.

    Article  CAS  Google Scholar 

  19. Rose S, Misharin A, Perlman H. A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry A. 2012;81(4):343–50.

    Article  Google Scholar 

  20. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic Dendrtic Cells. Ann Rev Immunol. 2003;21:685–711.

    Article  CAS  Google Scholar 

  21. Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature. 1995;375:151–5.

    Article  CAS  Google Scholar 

  22. Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med. 2001;193:51–60.

    Article  CAS  Google Scholar 

  23. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  CAS  Google Scholar 

  24. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor. J Exp Med. 1994;179(4):1109–18.

    Article  CAS  Google Scholar 

  25. Limongi CL, Alviano CS, de Souza W, Rozental S. Isolation and partial characterization of an adhesin from Fonsecaea pedrosoi. Med Myco. 2001;39:429–37.

    Article  CAS  Google Scholar 

  26. Sousa MS, Reid DM, Schweighoffer E, Tybulewicz V, Ruland J, Langhorne J, Yamasaki S, Taylor FR, Almeida SR, Brown GD. Restoration of pattern recognition receptor coestimulation to treat chromoblastomycosis, a chronic fungal infection of the skin. Cell Host Microbe. 2011;9(5):436–43.

    Article  CAS  Google Scholar 

  27. Cunha MM, Franzen AJ, Seabra SH, Herbst MH, Vugman NV, Borba LP, de Souza W, Rozental S. Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiol. 2010;10:80.

    Article  Google Scholar 

  28. Romero-Mastinez R, Wheeler M, Guerrero-Plata A, Rico G, Torres-Guerrero H. Biosynthesis and functions of melanin in Sporothrix schenckii. Infect Immun. 2000;68(6):3696–703.

    Article  Google Scholar 

  29. Rosas AL, Nosanchuk JD, Gomez BL, Edens WA, Henson JM, Casadevall A. Isolation and serological analyses of fungal melanins. J Immunol Methods. 2000;244(1–2):69–80.

    Article  CAS  Google Scholar 

  30. Gomez BL, Nosanchuk JD. Melanin and fungi. Curr Opin Infect Dis. 2003;16(2):91–6.

    Article  CAS  Google Scholar 

  31. Nosanchuk JD, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial components. Antimicrob Agents Chemother. 2006;50(11):3519–28.

    Article  CAS  Google Scholar 

  32. Akoumianaki T, Kyrmizi I, Valsecchi I, et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microb. 2016;19:79–90.

    Article  CAS  Google Scholar 

  33. Rozental A, Alviano CS, Souza W. Fine structure and cytochemical study of the interaction between Fonsecaea pedrosoi and rat polymorphonuclear leukocyte. J Med Vet Mycol. 1996;34(5):323–30.

    Article  CAS  Google Scholar 

  34. Nosanchuk JD, Rosas AL, Lee SC, Casadevall A. Melanisation of Cryptococcus neoformans in humam brains tisse. Lancet. 2000;355(9220):2049–50.

    Article  CAS  Google Scholar 

  35. Bocca AL, Brito PP, Figueiredo F, Tosta CE. Inhibition of nitric oxide production by macrophages in chromoblastomycosis: a role for Fonsecaea pedrosoi melanin. Mycopathologia. 2006;161(4):195–203.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by FAPESP and Doctoral Fellowship from FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavínia Maria Dal’Mas Romera.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Handling Editor: Rosely Maria Zancope-Oliveira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Telma Fátima Emidio Kimura and Lavínia Maria Dal’Mas Romera contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11046_2020_429_MOESM1_ESM.tif

F. pedrosoi conidia influences the number of Ly6G+ cells in footpad and lymph nodes. BALB/c mice were infected subcutaneously on the footpad with F. pedrosoi conidia. After 12, 24 and 72 h of infection, total cells were obtained from footpad and lymph nodes were collected +. As control, mice were infected with PBS. Data were analyzed by software FlowJo and gating strategy (FSc–SSc cell analysis and Ly6G+). All data are representative as mean of three independent experiments (*p < 0.01, SD). One-way ANOVA test and Tukey’s multiple comparison test. (A and B) Analysis of Ly6G+ in footpad. (C and D) Analysis of Ly6G+ in lymph nodes (TIFF 513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, T.F.E., Romera, L.M.D. & de Almeida, S.R. Fonsecaea pedrosoi Conidia Induces Activation of Dendritic Cells and Increases CD11c+ Cells in Regional Lymph Nodes During Experimental Chromoblastomycosis. Mycopathologia 185, 245–256 (2020). https://doi.org/10.1007/s11046-020-00429-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-020-00429-w

Keywords

Navigation