Skip to main content
Log in

Genome-wide association study of soybean seed germination under drought stress

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Drought stress, which is increasing with climate change, is a serious threat to agricultural sustainability worldwide. Seed germination is an essential growth phase that ensures the successful establishment and productivity of soybean, which can lose substantial productivity in soils with water deficits. However, only limited genetic information is available about how germinating soybean seeds may exert drought tolerance. In this study, we examined the germinating seed drought-tolerance phenotypes and genotypes of a panel of 259 released Chinese soybean cultivars panel. Based on 4616 Single-Nucleotide Polymorphisms (SNPs), we conducted a mixed-linear model GWAS that identified a total of 15 SNPs associated with at least one drought-tolerance index. Notably, three of these SNPs were commonly associated with two drought-tolerance indices. Two of these SNPs are positioned upstream of genes, and 11 of them are located in or near regions where QTLs have been previously mapped by linkage analysis, five of which are drought-related. The SNPs detected in this study can both drive hypothesis-driven research to deepen our understanding of genetic basis of soybean drought tolerance at the germination stage and provide useful genetic resources that can facilitate the selection of drought stress traits via genomic-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Haleem H, Lee GJ, Boerma RH (2011) Identification of QTL for increased fibrous roots in soybean. Theor Appl Genet 122:935–946

    PubMed  Google Scholar 

  • Abdel-Haleem H, Carter TE, Purcell LC, King CA, Ries LL, Chen P, Schapaugh W, Sinclair TR, Boerma HR (2012) Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr). Theor Appl Genet 125:837–846

    CAS  PubMed  Google Scholar 

  • Akond M, Liu S, Schoener L, Anderson JA, Kantartzi SK, Meksem K, Song Q, Wang D, Wen Z, Lightfoot DA, Kassem MA (2013) SNP-based genetic linkage map of soybean using the SoySNP6K Illumina Infinium BeadChip genotyping array. J Plant Genome Sci 1:80–89

    Google Scholar 

  • Bai J, Mao J, Yang H, Khan A, Fan A, Liu S, Zhang J, Wang D, Gao H, Zhang J (2017) Sucrose non-ferment 1 related protein kinase 2 (SnRK 2) genes could mediate the stress responses in potato (Solanum tuberosum L.). BMC Genet 18:41

    PubMed  PubMed Central  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 115:1–14

    Google Scholar 

  • Chander S, Almeida DM, Serra TS, Jardim-Messeder D, Barros PM, Lourenço TF, Figueiredo DD, Margis-Pinheiro M, Costa JM, Oliveira MM, Saibo NJ (2018) OsICE1 transcription factor improves photosynthetic performance and reduces grain losses in rice plants subjected to drought. Environ Exp Bot 150:88–98

    CAS  Google Scholar 

  • Charlson D, Bhatnagar S, King C, Ray J, Sneller C, Carter T, Purcell L (2009) Polygenic inheritance of canopy wilting in soybean [Glycine max (L.) Merr.]. Theor Appl Genet 119:587–594

    PubMed  Google Scholar 

  • Chen H, Shan Z, Sha A, Wu B, Yang Z, Chen S, Zhou R, Zhou X (2011) Quantitative trait loci analysis of stem strength and related traits in soybean. Euphytica 179:485–497

    Google Scholar 

  • Chen T, Li W, Hu X, Guo J, Liu A, Zhang B (2015) A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol 56:917–929

    CAS  PubMed  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    CAS  PubMed  Google Scholar 

  • Csanadi G, Vollmann J, Stift G, Lelley T (2001) Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet 103:912–919

    CAS  Google Scholar 

  • Dias FG, Borges ACN, Viana AAB, Mesquita RO, Romano E, Grossi de Sa MF, Nepomuceno AL, Loureiro ME, Ferreira MA (2012) Expression analysis in response to drought stress in soybean: shedding light on the regulation of metabolic pathway genes. Genet Mol Biol 35:222–232

    Google Scholar 

  • Ding S, Zhang B, Qin F (2015) Arabidopsis RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2. 6-mediated phosphorylation. Plant Cell 27:3228–3244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dogan E, Kirnak H, Copur O (2007) Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crops Res 103:154–159

    Google Scholar 

  • Dornbos DL, Mullen RE (1992) Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J Am Oil Chem Soc 69:228–231

    CAS  Google Scholar 

  • Du W, Fu S, Yu D (2009a) Genetic analysis for the leaf pubescence density and water status traits in soybean [Glycine max (L.) Merr.]. Plant Breed 128:259–265

    Google Scholar 

  • Du W, Wang M, Fu S, Yu D (2009b) Mapping QTL for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J Genet Genomics 36:721–731

    PubMed  Google Scholar 

  • Du W, Yu D, Fu S (2009c) Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population. J Integr Plant Biol 51:868–878

    CAS  PubMed  Google Scholar 

  • Eskandari M, Cober E, Rajcan I (2013a) Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet 126:1677–1687

    CAS  PubMed  Google Scholar 

  • Eskandari M, Cober E, Rajcan I (2013b) Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents. Theor Appl Genet 126:403–495

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Frederick JR, Camp CR, Bauer PJ (2001) Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci 41:759–763

    Google Scholar 

  • Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M (2005) Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet 111:851–861

    CAS  PubMed  Google Scholar 

  • Gao F, Yao H, Zhao H, Zhou J, Luo X, Huang Y, Li C, Chen H, Wu Q (2016) Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiol Bioch 109:387–396

    CAS  Google Scholar 

  • Ghorbel M, Cotelle V, Ebel C, Zaidi I, Ormancey M, Galaud JP, Hanin M (2017) Regulation of the wheat MAP kinase phosphatase 1 by 14-3-3 proteins. Plant Sci 257:37–47

    CAS  PubMed  Google Scholar 

  • Guo B, Sleper DA, Arelli PR, Shannon JG, Nguyen HT (2005) Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theor Appl Genet 103:1167–1173

    Google Scholar 

  • Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W (2012) QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet 125:671–683

    CAS  PubMed  Google Scholar 

  • Han Y, Teng W, Wang Y, Zhao X, Wu L, Li D, Li W (2015) Unconditional and conditional QTL underlying the genetic interrelationships between soybean seed isoflavone, and protein or oil contents. Plant Breed 134:300–309

    CAS  Google Scholar 

  • Hou YJ, Zhu Y, Wang P, Zhao Y, Xie S, Batelli G, Wang B, Duan CG, Wang X, Xing L, Lei M, Yan J, Zhu X, Zhu JK (2016) Type one protein phosphatase 1 and its regulatory protein inhibitor 2 negatively regulate ABA signaling. PLoS Genet 12:e1005835

    PubMed  PubMed Central  Google Scholar 

  • Huang X, Hou L, Meng J, You H, Li Z, Gong Z, Yang S, Shi Y (2018) The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol Plant 11:970–982

    CAS  PubMed  Google Scholar 

  • Hufstetler EV, Boerma HR, Carter TE, Earl HJ (2007) Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Sci 47:25–35

    Google Scholar 

  • Hwang S, King CA, Ray JD, Cregan PB, Chen P, Carter TE, Li Z, Abdel-Haleem H, Matson KW, Schapaugh W, Purcell LC (2015) Confirmation of delayed canopy wilting QTLs from multiple soybean mapping populations. Theor Appl Genet 128:2047–2065

    PubMed  Google Scholar 

  • Hwang S, King CA, Chen P, Ray JD, Cregan PB, Carter TE, Li Z, Abdel-Haleem H, Matson KW, Schapaugh W, Purcell LC (2016) Meta-analysis to refine map position and reduce confidence intervals for delayed-canopy-wilting QTLs in soybean. Mol Breeding 36:91

    Google Scholar 

  • Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landau-Ellis D, Stefaniak TR, Schmidt ME (2004) Seed quality QTL in a prominent soybean population. Theor Appl Genet 109:552–561

    CAS  PubMed  Google Scholar 

  • Jun TH, Van K, Kim MY, Lee SH, Walker DR (2008) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162:179–191

    CAS  Google Scholar 

  • Kabelka EA, Diers BW, Fehr WR, LeRoy AR, Baianu IC, You T, Neece DJ, Nelson RL (2004) Putative alleles for increased yield from soybean plant introductions. Crop Sci 44:784–791

    Google Scholar 

  • Kaler AS, Ray JD, Schapaugh WT, King CA, Purcell LC (2017) Genome-wide association mapping of canopy wilting in diverse soybean genotypes. Theor Appl Genet 130:2203–2217

    CAS  PubMed  Google Scholar 

  • Kisha TJ, Sneller CH, Diers BW (1997) Relationship between genetic distance among parents and genetic variance in populations of soybean. Crop Sci 37:1317–1325

    Google Scholar 

  • Liang H, Yu Y, Wang S, Lian Y, Wang T, Wei Y, Gong P, Liu X, Fang X, Zhang M (2010) QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Ag Sci China 9:1108–1116

    CAS  Google Scholar 

  • Liao YD, Lin KH, Chen CC, Chiang CM (2016) Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Mol Breeding 36:22

    Google Scholar 

  • Liu X (2009) Drought. In: Lam HM et al (ed) Research on tolerance to stresses in Chinese soyben. China Agriculture Press, Beijing

    Google Scholar 

  • Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    CAS  PubMed  Google Scholar 

  • Liu W, Kim M, Van K, Lee Y, Li H, Liu X, Lee S (2011) QTL identification of yield-related traits and their association with flowering and maturity in soybean. J Crop Sci Biotech 14:65–70

    Google Scholar 

  • Liu Z, Li H, Wen Z, Fan X, Li Y, Guan R, Guo Y, Wang S, Wang D, Qiu LJ (2017) Comparison of genetic diversity between Chinese and American soybean (Glycine max (L.)) accessions revealed by high-density SNPs. Front Plant Sci 8:11. https://doi.org/10.3389/fpls.2017.02014

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, PSYCHOTRIA OFFICINALIS (Rubiaceae). Am J Bot 82:1420–1425

    Google Scholar 

  • Lu W, Wen Z, Li H, Yuan D, Li J, Zhang H, Huang Z, Cui S, Du W (2012) Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theor Appl Gen 126:425–433

    Google Scholar 

  • Mao T, Jiang Z, Han Y, Teng W, Zhao X, Li W (2013) Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed 132:630–641

    CAS  Google Scholar 

  • Maughan PJ, Maroof MAS, Buss GR (2000) Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max). Mol Breeding 6:105–111

    CAS  Google Scholar 

  • Mederski HJ, Jeffers DL (1973) Yield response of soybean varieties grown at two soil moisture levels. Agron J 65:410–412

    Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Google Scholar 

  • Mian MAR, Bailey MA, Ashley DA, Wells R, Carter TE, Parrott WA, Boerma HR (1996) Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci 36:1252–1257

    CAS  Google Scholar 

  • Mian MAR, Ashley DA, Boerma HR (1998) An additional QTL for water use efficiency in soybean. Crop Sci 38:390–393

    Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    CAS  PubMed  Google Scholar 

  • Mohammadi PP, Moieni A, Hiraga S, Komatsu S (2012) Organ specific proteomic analysis of drought-stressed soybean seedlings. J Proteomics 75:1906–1923

    CAS  PubMed  Google Scholar 

  • Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc Biol Sci 363:639–658

    CAS  Google Scholar 

  • Oya T, Nepomuceno AL, Farias JRB, Tobita S, Ito O (2004) Drought tolerance characteristics of Brazilian soybean cultivars—evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod Sci 7:129–137

    Google Scholar 

  • Park DY, Shim Y, Gi E, Lee BD, An G, Kang K, Paek NC (2018) The MYB-related transcription factor RADIALIS-LIKE3 (OsRL3) functions in ABA-induced leaf senescence and salt sensitivity in rice. Environ Exp Bot 156:86–95

    CAS  Google Scholar 

  • Patterson NJ, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190

    PubMed  PubMed Central  Google Scholar 

  • Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320:171–173

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker assisted selection strategies. Theor Appl Genet 94:887–896

    Google Scholar 

  • Rönnberg-Wästljung AC, Glynn C, Weih M (2005) QTL analyses of drought tolerance and growth for a Salix dasyclados × Salix viminalis hybrid in contrasting water regimes. Theor Appl Genet 110:537–549

    PubMed  Google Scholar 

  • SAS Institute Inc (2007) SAS/STAT software: Version 9.1.3. SAS Institute, Cary, NC

    Google Scholar 

  • Serrano I, Campos L, Rivas S (2018) Roles of E3 ubiquitin-ligases in nuclear protein homeostasis during plant stress responses. Front Plant Sci 9:139

    PubMed  PubMed Central  Google Scholar 

  • Sharma KK, Lavanya M (2002) Recent developments in transgenics for abiotic stress in legumes of the semi-arid tropics. In: JIRCAS Working Report. pp 61–73

  • Shu Y, Zhou Y, Shi X, Hu N, Shao Q, Du J (2015) Screening of appropriate PEG-6000 concentration for the identification of soybean drought tolerance at germination stage. Soybean Sci 1:56–59

    Google Scholar 

  • Specht JE, Williams JH, Weidenbenner CJ (1986) Differential responses of soybean genotypes subjected to a seasonal soil water gradient. Crop Sci 26:922–934

    Google Scholar 

  • Specht JE, Hume DJ, Kumudini SV (1999) Soybean yield potential—a genetic and physiological perspective. Crop Sci 39:1560–1570

    Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci 41:493–509

    CAS  Google Scholar 

  • Tajuddin T, Watanabe S, Yamanaka N, Harada K (2003) Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci 53:133–140

    CAS  Google Scholar 

  • Takahashi Y, Kinoshita T, Matsumoto M, Shimazaki KI (2016) Inhibition of the Arabidopsis bHLH transcription factor by monomerization through abscisic acid-induced phosphorylation. Plant J 87:559–567

    CAS  PubMed  Google Scholar 

  • Teng W, Han Y, Du Y, Sun D, Zhang Z, Qiu L, Sun G, Li W (2009) QTL analyses of seed weight during the development of soybean (Glycine max L Merr). Heredity 102:372380

    Google Scholar 

  • Thabet SG, Moursi YS, Karam MA, Graner A, Alqudah AM (2018) Genetic basis of drought tolerance during seed germination in barley. PLoS ONE 13:e0206682

    PubMed  PubMed Central  Google Scholar 

  • Tiwari B, Kalim S, Tyagi N, Kumari R, Bangar P, Barman P, Kumar S, Gaikwad A, Bhat KV (2018) Identification of genes associated with stress tolerance in moth bean [Vigna aconitifolia (Jacq.) Marechal], a stress hardy crop. Physiol Mol Biol Pla 24:551–561

    CAS  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    CAS  PubMed  Google Scholar 

  • Wang N, Zhang W, Qin M, Li S, Qiao M, Liu Z, Xiang F (2017) Drought tolerance conferred in soybean (Glycine max. L) by GmMYB84, a novel R2R3-MYB transcription factor. Plant Cell Physiol 58:1764–1776

    CAS  PubMed  Google Scholar 

  • Wen Z, Tan R, Yuan J, Bales C, Du W, Zhang S, Chilvers MI, Schmidt C, Song Q, Cregan PB, Wang D (2014) Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics 15:809

    PubMed  PubMed Central  Google Scholar 

  • Xiong LM, Wang RG, Mao GH, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Ge Y, Zhang W, Zhao Y, Yang G (2018) The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation. BMC Plant Biol 18:19

    PubMed  PubMed Central  Google Scholar 

  • Yang Z, Xin D, Liu C, Jiang H, Han X, Sun Y, Qi Z, Hu G, Chen Q (2013) Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments. Mol Genet Genomics 288:651–667

    CAS  PubMed  Google Scholar 

  • Yao D, Liu Z, Zhang J, Liu S, Qu J, Guan S, Pan L, Wang D, Liu J, Wang P (2015) Analysis of quantitative trait loci for main plant traits in soybean. Genet Mol Res 14:6101–6109

    CAS  PubMed  Google Scholar 

  • Yuan J, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA, Davis GT, Schmidt ME, Lightfoot DA (2002) Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci 42:271–277

    CAS  PubMed  Google Scholar 

  • Zhang D, Cheng H, Wang H, Zhang H, Liu C, Yu D (2007) Identification of genomic regions determining flower and pod numbers development in soybean (Glycine max L.). J Genet Genom 37:545–556

    Google Scholar 

  • Zhang B, Chen P, Chen C, Wang D, Shi A, Hou A, Ishibashi T (2008) Quantitative trait loci mapping of seed hardness in soybean. Crop Sci 48:1341–1349

    Google Scholar 

  • Zhao Y, Cheng X, Liu X, Wu H, Bi H, Xu H (2018) The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Front Plant Sci 9:1426

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R & D Program for Crop Breeding (Grant No. 2016YFD0100304), the Development of Novel Elite Soybean Cultivars and Lines with High Oil Content (Grant No. Z161100000916005-06), the Crop Germplasm Resources Protection (Grant No. 2017NWB036-5), the Platform of National Crop Germplasm Resources of China (Grant Nos. 2018-004 and 2017-004), the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS), and the Improvement of Soybean Abiotic Stress Tolerance to Address the Climate Change (Grant No. PJ0121092018).

Author information

Authors and Affiliations

Authors

Contributions

ZL, XQ, and LQ conceived and designed the experiments. ZL, ZG, YZ, XW, and HR performed the experiments. ZL, HL, ZW, BKW, YL, LY, HG, DW, XQ, and LQ analyzed data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Lijuan Qiu.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of authors.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, H., Gou, Z. et al. Genome-wide association study of soybean seed germination under drought stress. Mol Genet Genomics 295, 661–673 (2020). https://doi.org/10.1007/s00438-020-01646-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01646-0

Keywords

Navigation