Skip to main content

Advertisement

Log in

New Function of RUNX2 in Regulating Osteoclast Differentiation via the AKT/NFATc1/CTSK Axis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Cleidocranial dysplasia is an autosomal dominant skeletal disorder resulting from RUNX2 mutations. The influence of RUNX2 mutations on osteoclastogenesis and bone resorption have not been reported. To investigate the role of RUNX2 in osteoclast, RUNX2 expression in macrophages (RAW 264.7 cells) was detected. Stable RAW 264.7 cell lines expressing wild-type RUNX2 or mutated RUNX2 (c.514delT, p.172 fs) were established, and their functions in osteoclasts were investigated. Wild-type RUNX2 promoted osteoclast differentiation, formation of F-actin ring, and bone resorption, while mutant RUNX2 attenuated the positive differentiation effect. Wild-type RUNX2 increased the expression and activity of mTORC2. Subsequently, mTORC2 specifically promoted phosphorylation of AKT at the serine 473 residue. Activated AKT improved the nuclear translocation of NFATc1 and increased the expression of downstream genes, including CTSK. Inhibition of AKT phosphorylation abrogated the osteoclast formation of wild-type macrophages, whereas constitutively activated AKT rescued the osteoclast formation of mutant macrophages. The present study suggested that RUNX2 promotes osteoclastogenesis and bone resorption through the AKT/NFATc1/CTSK axis. Mutant RUNX2 lost the function of regulating osteoclast differentiation and bone remodeling, resulting in the defective formation of the tooth eruption pathway and impaction of permanent teeth in cleidocranial dysplasia. This study, for the first time, verifies the effect of RUNX2 on osteoclast differentiation and bone resorption and provides new insight for the explanation of cleidocranial dysplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ott CE, Leschik G, Trotier F, Brueton L, Brunner HG, Brussel W, Guillen-Navarro E, Haase C, Kohlhase J, Kotzot D, Lane A, Lee-Kirsch MA, Morlot S, Simon ME, Steichen-Gersdorf E, Tegay DH, Peters H, Mundlos S, Klopocki E (2010) Deletions of the RUNX2 gene are present in about 10% of individuals with cleidocranial dysplasia. Hum Mutat 31(8):E1587–1593. https://doi.org/10.1002/humu.21298

    Article  CAS  PubMed  Google Scholar 

  2. Cooper SC, Flaitz CM, Johnston DA, Lee B, Hecht JT (2001) A natural history of cleidocranial dysplasia. Am J Med Genet 104(1):1–6

    Article  CAS  Google Scholar 

  3. Zhang CY, Zheng SG, Wang YX, Zhu JX, Zhu X, Zhao YM, Ge LH (2009) Novel RUNX2 mutations in Chinese individuals with cleidocranial dysplasia. J Dental Res 88(9):861–866. https://doi.org/10.1177/0022034509342083

    Article  CAS  Google Scholar 

  4. Jaruga A, Hordyjewska E, Kandzierski G, Tylzanowski P (2016) Cleidocranial dysplasia and RUNX2-clinical phenotype-genotype correlation. Clin Genet 90(5):393–402. https://doi.org/10.1111/cge.12812

    Article  CAS  PubMed  Google Scholar 

  5. Wise GE (2009) Cellular and molecular basis of tooth eruption. Orthod Cranio Res 12(2):67–73. https://doi.org/10.1111/j.1601-6343.2009.01439.x

    Article  CAS  Google Scholar 

  6. Wise GE, He H, Gutierrez DL, Ring S, Yao S (2011) Requirement of alveolar bone formation for eruption of rat molars. Eur J Oral Sci 119(5):333–338. https://doi.org/10.1111/j.1600-0722.2011.00854.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wise GE, Yao S (2006) Regional differences of expression of bone morphogenetic protein-2 and RANKL in the rat dental follicle. Eur J Oral Sci 114(6):512–516. https://doi.org/10.1111/j.1600-0722.2006.00406.x

    Article  CAS  PubMed  Google Scholar 

  8. Castaneda B, Simon Y, Jacques J, Hess E, Choi YW, Blin-Wakkach C, Mueller C, Berdal A, Lezot F (2011) Bone resorption control of tooth eruption and root morphogenesis: involvement of the receptor activator of NF-kappaB (RANK). J Cell Physiol 226(1):74–85. https://doi.org/10.1002/jcp.22305

    Article  CAS  PubMed  Google Scholar 

  9. Wise GE, Yao S, Henk WG (2007) Bone formation as a potential motive force of tooth eruption in the rat molar. Clin Anat 20(6):632–639. https://doi.org/10.1002/ca.20495

    Article  PubMed  Google Scholar 

  10. Takarada T, Hinoi E, Nakazato R, Ochi H, Xu C, Tsuchikane A, Takeda S, Karsenty G, Abe T, Kiyonari H, Yoneda Y (2013) An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice. J Bone Miner Res 28(10):2064–2069. https://doi.org/10.1002/jbmr.1945

    Article  CAS  PubMed  Google Scholar 

  11. Chen P, Wei D, Xie B, Ni J, Xuan D, Zhang J (2014) Effect and possible mechanism of network between microRNAs and RUNX2 gene on human dental follicle cells. J Cell Biochem 115(2):340–348. https://doi.org/10.1002/jcb.24668

    Article  CAS  PubMed  Google Scholar 

  12. Yan WJ, Zhang CY, Yang X, Liu ZN, Wang XZ, Sun XY, Wang YX, Zheng SG (2015) Abnormal differentiation of dental pulp cells in cleidocranial dysplasia. J Dental Res 94(4):577–583. https://doi.org/10.1177/0022034514566655

    Article  CAS  Google Scholar 

  13. Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 87(18):7260–7264. https://doi.org/10.1073/pnas.87.18.7260

    Article  CAS  PubMed  Google Scholar 

  14. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176

    Article  CAS  Google Scholar 

  15. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95(7):3597–3602. https://doi.org/10.1073/pnas.95.7.3597

    Article  CAS  PubMed  Google Scholar 

  16. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20(3):345–357. https://doi.org/10.1210/edrv.20.3.0367

    Article  CAS  PubMed  Google Scholar 

  17. Enomoto H, Shiojiri S, Hoshi K, Furuichi T, Fukuyama R, Yoshida CA, Kanatani N, Nakamura R, Mizuno A, Zanma A, Yano K, Yasuda H, Higashio K, Takada K, Komori T (2003) Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2-/- mice by RANKL transgene. J Biol Chem 278(26):23971–23977. https://doi.org/10.1074/jbc.M302457200

    Article  CAS  PubMed  Google Scholar 

  18. Martin A, Xiong J, Koromila T, Ji JS, Chang S, Song YS, Miller JL, Han CY, Kostenuik P, Krum SA, Chimge NO, Gabet Y, Frenkel B (2015) Estrogens antagonize RUNX2-mediated osteoblast-driven osteoclastogenesis through regulating RANKL membrane association. Bone 75:96–104. https://doi.org/10.1016/j.bone.2015.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Byon CH, Sun Y, Chen J, Yuan K, Mao X, Heath JM, Anderson PG, Tintut Y, Demer LL, Wang D, Chen Y (2011) Runx2-upregulated receptor activator of nuclear factor kappaB ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arterioscler Thromb Vasc Biol 31(6):1387–1396. https://doi.org/10.1161/atvbaha.110.222547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang C, Zheng S, Wang Y, Zhao Y, Zhu J, Ge L (2010) Mutational analysis of RUNX2 gene in Chinese patients with cleidocranial dysplasia. Mutagenesis 25(6):589–594. https://doi.org/10.1093/mutage/geq044

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Sun X, Zhang X, Wang X, Zhang C, Zheng S (2019) RUNX2 mutation impairs osteogenic differentiation of dental follicle cells. Arch Oral Biol 97:156–164. https://doi.org/10.1016/j.archoralbio.2018.10.029

    Article  CAS  PubMed  Google Scholar 

  22. Dincsoy Bir F, Dinckan N, Guven Y, Bas F, Altunoglu U, Kuvvetli SS, Poyrazoglu S, Toksoy G, Kayserili H, Uyguner ZO (2017) Cleidocranial dysplasia: clinical, endocrinologic and molecular findings in 15 patients from 11 families. Eur J Med Genet 60(3):163–168. https://doi.org/10.1016/j.ejmg.2016.12.007

    Article  PubMed  Google Scholar 

  23. Mundlos S (1999) Cleidocranial dysplasia: clinical and molecular genetics. J Med Genet 36(3):177–182

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bergwitz C, Prochnau A, Mayr B, Kramer FJ, Rittierodt M, Berten HL, Hausamen JE, Brabant G (2001) Identification of novel CBFA1/RUNX2 mutations causing cleidocranial dysplasia. J Inherit Metab Dis 24(6):648–656. https://doi.org/10.1023/a:1012758925617

    Article  CAS  PubMed  Google Scholar 

  25. Yoshida T, Kanegane H, Osato M, Yanagida M, Miyawaki T, Ito Y, Shigesada K (2002) Functional analysis of RUNX2 mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype-phenotype correlations. Am J Hum Genet 71(4):724–738. https://doi.org/10.1086/342717

    Article  PubMed  PubMed Central  Google Scholar 

  26. Song I, Kim JH, Kim K, Jin HM, Youn BU, Kim N (2009) Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. FEBS Lett 583(14):2435–2440. https://doi.org/10.1016/j.febslet.2009.06.047

    Article  CAS  PubMed  Google Scholar 

  27. Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40(2):251–264. https://doi.org/10.1016/j.bone.2006.09.023

    Article  CAS  PubMed  Google Scholar 

  28. Lu SY, Li M, Lin YL (2014) Mitf regulates osteoclastogenesis by modulating NFATc1 activity. Exp Cell Res 328(1):32–43. https://doi.org/10.1016/j.yexcr.2014.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsumoto M, Kogawa M, Wada S, Takayanagi H, Tsujimoto M, Katayama S, Hisatake K, Nogi Y (2004) Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 279 (44):45969–45979. https://doi.org/10.1074/jbc.M408795200

    Article  CAS  PubMed  Google Scholar 

  30. Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279(25):26475–26480. https://doi.org/10.1074/jbc.M313973200

    Article  CAS  PubMed  Google Scholar 

  31. Moon JB, Kim JH, Kim K, Youn BU, Ko A, Lee SY, Kim N (2012) Akt induces osteoclast differentiation through regulating the GSK3beta/NFATc1 signaling cascade. J Immunol 188(1):163–169. https://doi.org/10.4049/jimmunol.1101254

    Article  CAS  PubMed  Google Scholar 

  32. Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12(4):487–502. https://doi.org/10.1016/j.devcel.2007.03.020

    Article  CAS  PubMed  Google Scholar 

  33. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li YP (2017) Galpha13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3beta-NFATc1 signalling pathway. Nat Commun 8:13700. https://doi.org/10.1038/ncomms13700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jang HD, Shin JH, Park DR, Hong JH, Yoon K, Ko R, Ko CY, Kim HS, Jeong D, Kim N, Lee SY (2011) Inactivation of glycogen synthase kinase-3beta is required for osteoclast differentiation. J Biol Chem 286(45):39043–39050. https://doi.org/10.1074/jbc.M111.256768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Copp J, Manning G, Hunter T (2009) TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 69(5):1821–1827. https://doi.org/10.1158/0008-5472.can-08-3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, Gera J (2007) mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 67(24):11712–11720. https://doi.org/10.1158/0008-5472.can-07-2223

    Article  CAS  PubMed  Google Scholar 

  37. Huang S, Yang ZJ, Yu C, Sinicrope FA (2011) Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1. J Biol Chem 286(46):40002–40012. https://doi.org/10.1074/jbc.M111.297432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tandon M, Chen Z, Pratap J (2014) Runx2 activates PI3K/Akt signaling via mTORC2 regulation in invasive breast cancer cells. Breast Cancer Res 16(1):R16. https://doi.org/10.1186/bcr3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Luth A, Koskivirta I, Kleuser B, Vacher J, Vuorio E, Horne WC, Baron R (2013) Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Investig 123(2):666–681. https://doi.org/10.1172/jci64840

    Article  CAS  PubMed  Google Scholar 

  40. Chen W, Yang S, Abe Y, Li M, Wang Y, Shao J, Li E, Li YP (2007) Novel pycnodysostosis mouse model uncovers cathepsin K function as a potential regulator of osteoclast apoptosis and senescence. Hum Mol Genet 16(4):410–423. https://doi.org/10.1093/hmg/ddl474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95(23):13453–13458. https://doi.org/10.1073/pnas.95.23.13453

    Article  CAS  PubMed  Google Scholar 

  42. Panwar P, Soe K, Guido RV, Bueno RV, Delaisse JM, Bromme D (2016) A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K. Br J Pharmacol 173(2):396–410. https://doi.org/10.1111/bph.13383

    Article  CAS  PubMed  Google Scholar 

  43. Prates TP, Taira TM, Holanda MC, Bignardi LA, Salvador SL, Zamboni DS, Cunha FQ, Fukada SY (2014) NOD2 contributes to Porphyromonas gingivalis-induced bone resorption. J Dental Res 93(11):1155–1162. https://doi.org/10.1177/0022034514551770

    Article  CAS  Google Scholar 

  44. Sharmin F, McDermott C, Lieberman J, Sanjay A, Khan Y (2017) Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling. J Orthop Res 35(5):1086–1095. https://doi.org/10.1002/jor.23287

    Article  CAS  PubMed  Google Scholar 

  45. Faienza MF, Ventura A, Piacente L, Ciccarelli M, Gigante M, Gesualdo L, Colucci S, Cavallo L, Grano M, Brunetti G (2014) Osteoclastogenic potential of peripheral blood mononuclear cells in cleidocranial dysplasia. Int J Med Sci 11(4):356–364. https://doi.org/10.7150/ijms.7793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoda S, Suda N, Kitahara Y, Komori T, Ohyama K (2004) Delayed tooth eruption and suppressed osteoclast number in the eruption pathway of heterozygous Runx2/Cbfa1 knockout mice. Arch Oral Biol 49(6):435–442. https://doi.org/10.1016/j.archoralbio.2004.01.010

    Article  CAS  PubMed  Google Scholar 

  47. Collin-Osdoby P, Osdoby P (2012) RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Biol 816:187–202. https://doi.org/10.1007/978-1-61779-415-5_13

    Article  CAS  PubMed  Google Scholar 

  48. Laha D, Deb M, Das H (2019) KLF2 (kruppel-like factor 2 [lung]) regulates osteoclastogenesis by modulating autophagy. Autophagy 15(12):2063–2075. https://doi.org/10.1080/15548627.2019.1596491

    Article  CAS  PubMed  Google Scholar 

  49. Hao S, Meng J, Zhang Y, Liu J, Nie X, Wu F, Yang Y, Wang C, Gu N, Xu H (2017) Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials 140:16–25. https://doi.org/10.1016/j.biomaterials.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto A, Miyazaki T, Kadono Y, Takayanagi H, Miura T, Nishina H, Katada T, Wakabayashi K, Oda H, Nakamura K, Tanaka S (2002) Possible involvement of IkappaB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor kappaB ligand. J Bone Miner Res 17(4):612–621. https://doi.org/10.1359/jbmr.2002.17.4.612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of National Natural Science Foundation of China (grant number 81771053, 81772873 and 81970920). The authors are grateful to all the participants in this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YX, YW and SZ; Methodology: YX, DL, JL and CZ; Data Curation: YX and YL; Writing—Original Draft Preparation: YX; Writing—Review & Editing: YW and SZ.

Corresponding authors

Correspondence to Yixiang Wang or Shuguo Zheng.

Ethics declarations

Conflict of interest

Yuejiao Xin, Yang Liu, Dandan Liu, Jie Li, Chenying Zhang, Yixiang Wang, and Shuguo Zheng declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This study was approved by the Ethical Committee of Peking University School and the Hospital of Stomatology (Approval No. PKUSSIRB-2012004) and conducted strictly in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All participants signed an informed consent prior to study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Y., Liu, Y., Liu, D. et al. New Function of RUNX2 in Regulating Osteoclast Differentiation via the AKT/NFATc1/CTSK Axis. Calcif Tissue Int 106, 553–566 (2020). https://doi.org/10.1007/s00223-020-00666-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00666-7

Keywords

Navigation