Skip to main content

Advertisement

Log in

Characteristics, Sources, and Risks of Polycyclic Aromatic Hydrocarbons in Topsoil and Surface Water from the Liuxi River Basin, South China

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The concentrations, composition, sources, and risks of polycyclic aromatic hydrocarbons (PAHs) in topsoil and surface water of the Liuxi River basin, south China were analyzed in this study. The total concentrations of 16 PAHs ranged from 296.26 to 888.14 ng/g in topsoil and from 156.73 to 422.03 ng/L in surface water, indicating mild pollution. The PAHs in topsoil exhibited an even spatial distribution, suggesting that they originated primarily from dry and wet deposition of transported pollutants. The concentration of PAHs in surface water did not differ significantly geographically, but the concentrations of total, three-, and four-ring PAHs were significantly lower in the Liuxi River than in its tributaries. Three- and two-ring PAHs predominated in topsoil and surface water, respectively. A correlation analysis suggested that the total organic carbon content and pH exerted a negligible effect on the spatial distribution of PAHs in topsoil, and they may have common sources. Fossil fuel combustion (particularly vehicle emissions) and coking production were the dominant sources of PAHs in topsoil, whereas those in surface water were derived from a variety of sources. The total toxic equivalent concentrations of 16 PAHs in topsoil ranged from 3.73 to 105.66 ng/g (mean, 30.93 ng/g), suggesting that exposure to the basin’s topsoil does not pose a risk to the environment or public health according to the Canadian soil quality guidelines. A risk assessment revealed that the total PAH concentrations in surface water posed a low ecological risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adeniji AO et al (2019) Levels of polycyclic aromatic hydrocarbons in the water and sediment of buffalo river estuary, South Africa and their health risk assessment. Arch Environ Contam Toxicol 76:657–669

    Article  CAS  Google Scholar 

  • Amjadian K et al (2016) Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soils of different land uses in Erbil metropolis, Kurdistan Region, Iraq. Environ Monitor Assess 188:605

    Article  CAS  Google Scholar 

  • Bai YW et al (2014) Occurrence, distribution, environmental risk assessment and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Liaohe River Basin, China. Bull Environ Contam Toxicol 93:744–751

    Article  CAS  Google Scholar 

  • Bi X et al (2016) Polycyclic aromatic hydrocarbons in soils from the Central-Himalaya region: distribution, sources, and risks to humans and wildlife. Sci Total Environ 556:12–22

    Article  CAS  Google Scholar 

  • Bucheli TD et al (2004) Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56:1061–1076

    Article  CAS  Google Scholar 

  • Cai CY et al (2017) Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. Chemosphere 178:301–308

    Article  CAS  Google Scholar 

  • Cao ZG et al (2010) Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology 19:827–837

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment) (2010) Polycyclic aromatic hydrocarbons. Canadian soil quality guidelines for protection of environmental and human health. Canadian soil quality guidelines. http://ceqg-rcqe.ccme.ca/

  • Chai C et al (2017) Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in the soils of vegetable greenhouses in Shandong, China. Ecotoxicol Environ Saf 142:181–188

    Article  CAS  Google Scholar 

  • Chen B et al (2004) Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res 38:3558–3568

    Article  CAS  Google Scholar 

  • Chen M et al (2016) Polycyclic aromatic hydrocarbons in soils from Urumqi, China: distribution, source contributions, and potential health risks. Environ Monitor Assess 185:5639–5651

    Article  CAS  Google Scholar 

  • Chen YN et al (2018) Contamination and health risk assessment of PAHs in farmland soils of the Yinma River Basin, China. Ecotoxicol Environ Saf 156:383–390

    Article  CAS  Google Scholar 

  • Countway RE et al (2003) Polycyclic aromatic hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA Estuary. Org Geochem 34:209–224

    Article  CAS  Google Scholar 

  • Dai JL et al (2008) Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Ji’nan city, China. Environ Monitor Assess 147:317–326

    Article  CAS  Google Scholar 

  • Devi NL et al (2016) Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: implications for spatial distribution, sources apportionment and risk assessment. Chemosphere 144:493–502

    Article  CAS  Google Scholar 

  • Doong RA, Lin YT (2004) Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-Ping River, Taiwan. Water Res 38:1733–1744

    Article  CAS  Google Scholar 

  • Duan YH et al (2015) Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China. Chemosphere 127:64–69

    Article  CAS  Google Scholar 

  • Fan XL et al (2019) Atmospheric PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Guiyang City, Southwest China: concentration, seasonal variation, sources and health risk assessment. Arch Environ Contam Toxicol 76:102–113

    Article  CAS  Google Scholar 

  • Farooq S et al (2011) Occurrence, finger printing and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Chenab River, Pakistan. J Environ Monitor 13:3207–3215

    Article  CAS  Google Scholar 

  • Feng CL et al (2007) Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River, China. Environ Monitor Assess 133:447–458

    Article  CAS  Google Scholar 

  • Fraser MP et al (1998) Air quality model evaluation data for organics. 5. C6–C22 nonpolar and semipolar aromatic compounds. Environ Sci Technol 32:1760–1770

    Article  CAS  Google Scholar 

  • Gan S et al (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    Article  CAS  Google Scholar 

  • Gope M et al (2018) Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Asansol city, India. Sustain Cities Soc 38:616–626

    Article  Google Scholar 

  • GZEMC (Guangzhou Environmental Monitoring Center) (2012) Water Quality Assessment Report for the Liuxi River Watershed. GZEMC, Guangzhou (in Chinese)

    Google Scholar 

  • Heywood E et al (2006) Factors influencing the national distribution of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in British soils. Environ Sci Technol 40:7629–7635

    Article  CAS  Google Scholar 

  • Hu J et al (2017a) Characteristics, source, and potential ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River Basin, Northeast China. Environ Sci Pollut Res 24:17090–17102

    Article  CAS  Google Scholar 

  • Hu TP et al (2017b) Status, source and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil from the water-level-fluctuation zone of the Three Gorges Reservoir, China. J Geochem Explor 172:20–28

    Article  CAS  Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. In: IARC monographs on the evaluation of carcinogenic risks to humans/World Health Organization, International Agency for Research on Cancer, vol 92, p 1

  • Jia JP et al (2017) Characteristics, identification, and potential risk of polycyclic aromatic hydrocarbons in road dusts and agricultural soils from industrial sites in Shanghai, China. Environ Sci Pollut Res 24:605–615

    Article  CAS  Google Scholar 

  • Jiang YF et al (2009) Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China. Chemosphere 75:1112–1118

    Article  CAS  Google Scholar 

  • Jiang YF et al (2011) Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in agricultural soil of Shanghai, China. Environ Monitor Assess 183:139–150

    Article  CAS  Google Scholar 

  • Jiang Y et al (2016) Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China. Ecotoxicol Environ Saf 126:154–162

    Article  CAS  Google Scholar 

  • Johnsen AR et al (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Kalf DF et al (1997) Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol Environ Saf 36:89–97

    Article  CAS  Google Scholar 

  • Kavouras I et al (2001) Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. environmental science and technology. 35:2288-2294

    Article  CAS  Google Scholar 

  • Khalili NR et al (1995) PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29:533–542

    Article  CAS  Google Scholar 

  • Kim KH et al (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80

    Article  CAS  Google Scholar 

  • Lan JC et al (2016) Polycyclic aromatic hydrocarbon contamination in a highly vulnerable underground river system in Chongqing, Southwest China. J Geochem Explor 168:65–71

    Article  CAS  Google Scholar 

  • Lee RG et al (2005) Emission factors and importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the domestic burning of coal and wood in the UK. Environ Sci Technol 39:1436–1447

    Article  CAS  Google Scholar 

  • Li J, Li FD (2017) Polycyclic aromatic hydrocarbons in the Yellow River estuary: levels, sources and toxic potency assessment. Mar Pollut Bull 116:479–487

    Article  CAS  Google Scholar 

  • Li H et al (2010) Distribution of polycyclic aromatic hydrocarbons in different size fractions of soil from a coke oven plant and its relationship to organic carbon content. J Hazard Mater 176:729–734

    Article  CAS  Google Scholar 

  • Li JL et al (2014) The source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the topsoil in Xiaodian sewage irrigation area, North of China. Ecotoxicology 23:1943–1950

    Article  CAS  Google Scholar 

  • Li J et al (2017) PAHs behavior in surface water and groundwater of the Yellow River estuary: evidence from isotopes and hydrochemistry. Chemosphere 178:143–153

    Article  CAS  Google Scholar 

  • Liu F et al (2014) Distribution and transportation of polycyclic aromatic hydrocarbons (PAHs) at the Humen river mouth in the Pearl River delta and their influencing factors. Mar Pollut Bull 84:401–410

    Article  CAS  Google Scholar 

  • Liu S et al (2016) Levels, sources and risk assessment of PAHs in multi-phases from urbanized river network system in Shanghai. Environ Pollut 219:555–567

    Article  CAS  Google Scholar 

  • Liu H et al (2018) Occurrence, characteristics and sources of polycyclic aromatic hydrocarbons in arable soils of Beijing, China. Ecotoxicol Environ Saf 159:120–126

    Article  CAS  Google Scholar 

  • Lu JG et al (2012) Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in agricultural soil of the Chongming Island in Shanghai. Environ Sci 33:4270–4275 (in Chinese with English abstract)

    Google Scholar 

  • Luo W et al (2016) Identification of sources of polycyclic aromatic hydrocarbons based on concentrations in soils from two sides of the Himalayas between China and Nepal. Environ Pollut 212:424–432

    Article  CAS  Google Scholar 

  • Lv JP et al (2014) Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in surface water from Liaohe River Basin, northeast China. Environ Sci Pollut Res 21:7088–7096

    Article  CAS  Google Scholar 

  • Ma LL et al (2005) Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China. Chemosphere 58:1355–1363

    Article  CAS  Google Scholar 

  • Ma YG et al (2008) Distribution, sources, and potential risk of polycyclic aromatic hydrocarbons (PAHs) in drinking water resources from Henan Province in middle of China. Environ Monitor Assess 146:127–138

    Article  CAS  Google Scholar 

  • Malik A et al (2011) Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River, India. Environ Monitor Assess 172:529–545

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach B (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem 11:121–127

    Article  Google Scholar 

  • Mohamed IB, Mohamed AE (2010) Distribution of polycyclic aromatic hydrocarbons in drinking water in Egypt. Desalination 251:34–40

    Article  CAS  Google Scholar 

  • Montuori P et al (2016) Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in water and sediments from Tiber River and estuary, Italy. Sci Total Environ 566–567:1254–1267

    Article  CAS  Google Scholar 

  • Nagy AS et al (2014) Occurrence and distribution of polycyclic aromatic hydrocarbons in surface water and sediments of the Danube River and its tributaries, Hungary. J Environ Sci Health Part A 49:1134–1141

    Article  CAS  Google Scholar 

  • Nam JJ et al (2003) Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea. Chemosphere 50:1281–1289

    Article  CAS  Google Scholar 

  • Nam JJ et al (2008) PAHs in background soils from Western Europe: influence of atmospheric deposition and soil organic matter. Chemosphere 70:1596–1602

    Article  CAS  Google Scholar 

  • Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    Article  CAS  Google Scholar 

  • Peng C et al (2011) Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environ Pollut 159:802–808

    Article  CAS  Google Scholar 

  • Peng C et al (2013) Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators. Environ Pollut 178:426–432

    Article  CAS  Google Scholar 

  • Peng FJ et al (2017) Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in China. Sci Total Environ 589:46–55

    Article  CAS  Google Scholar 

  • Pérez-Fernández B et al (2015) PAHs in the Ría de Arousa (NW Spain): a consideration of PAHs sources and abundance. Mar Pollut Bull 95:155–165

    Article  CAS  Google Scholar 

  • Pheiffer W et al (2018) Polycyclic aromatic hydrocarbons (PAHs) in sediments from a typical urban impacted river: application of a comprehensive risk assessment. Ecotoxicology 27:336–351

    Article  CAS  Google Scholar 

  • Ping LF et al (2007) Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environ Pollut 147:358–365

    Article  CAS  Google Scholar 

  • Rachwał M et al (2015) Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. Chemosphere 138:863–873

    Article  CAS  Google Scholar 

  • Rogge WF et al (1993) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27:636–651

    Article  CAS  Google Scholar 

  • Santana JL et al (2015) Occurrence and source appraisal of polycyclic aromatic hydrocarbons (PAHs) in surface waters of the Almendares River, Cuba. Arch Environ Contam Toxicol 69:143–152

    Article  CAS  Google Scholar 

  • Sarria-Villa R et al (2016) Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment. Sci Total Environ 540:455–465

    Article  CAS  Google Scholar 

  • Schlautman MA, Morgan JJ (1993) Effects of aqueous chemistry on the binding of PAHs by dissolved humic materials. Environ Sci Technol 27:961–969

    Article  CAS  Google Scholar 

  • Simcik MF et al (1999) Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ 33:5071–5079

    Article  CAS  Google Scholar 

  • Song XY et al (2013) Distribution and sources of polycyclic aromatic hydrocarbons in the surface water of Taizi River, Northeast of China. Environ Monitor Assess 185:8375–8382

    Article  CAS  Google Scholar 

  • Suman S et al (2016) Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Sci Total Environ 545–546:353–360

    Article  CAS  Google Scholar 

  • Sun JH et al (2009) Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China. Ecotoxicol Environ Saf 72:1614–1624

    Article  CAS  Google Scholar 

  • Tang L et al (2005) Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ Int 31:822–828

    Article  CAS  Google Scholar 

  • Tang X et al (2010) Levels and distributions of polycyclic aromatic hydrocarbons in agricultural soils in an emerging e-waste recycling town in Taizhou area, China. J Environ Sci Health Part A 45:1076–1084

    Article  CAS  Google Scholar 

  • Thiombane M et al (2018) Source patterns and contamination level of polycyclic aromatic hydrocarbons (PAHs) in urban and rural areas of Southern Italian soils. Environ Geochem Health 41:507–528

    Article  CAS  Google Scholar 

  • Tong R et al (2018) Levels, sources and probabilistic health risks of polycyclic aromatic hydrocarbons in the agricultural soils from sites neighboring suburban industries in Shanghai. Sci Total Environ 616–617:1365–1373

    Article  CAS  Google Scholar 

  • Valavanidis A et al (2006) Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece). Chemosphere 65:760–768

    Article  CAS  Google Scholar 

  • Vane CH et al (2014) Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Appl Geochem 51:303–314

    Article  CAS  Google Scholar 

  • Wang CH et al (2015) Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: concentration, source, spatial distribution, and potential human health risk. Sci Total Environ 527–528:375–383

    Article  CAS  Google Scholar 

  • Wang CL et al (2016) Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the water and suspended sediments from the middle and lower reaches of the Yangtze River, China. Environ Sci Pollut Res 23:17158–17170

    Article  CAS  Google Scholar 

  • Wang C et al (2017) Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: a review. Pedosphere 27:17–26

    Article  Google Scholar 

  • Wania F, Mackay D (1993) Modelling the global distribution of toxaphene: a discussion of feasibility and desirability. Chemosphere 27:2079–2094

    Article  CAS  Google Scholar 

  • Wilckel W (2000) Polycyclic aromatic hydrocarbons (PAHs) in soil: a review. J Plant Nutr Soil Sci 163:229–248

    Article  Google Scholar 

  • Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108

    Article  CAS  Google Scholar 

  • Xing XL et al (2011) Spatial distribution and source diagnosis of polycyclic aromatic hydrocarbons in soils from Chengdu Economic Region, Sichuan Province, western China. J Geochem Explor 110:146–154

    Article  CAS  Google Scholar 

  • Yan JX et al (2016) Polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries of China: distribution, seasonal variations and ecological risk assessment. Mar Pollut Bull 109:471–479

    Article  CAS  Google Scholar 

  • Yang B et al (2012) Risk assessment and sources of polycyclic aromatic hydrocarbons in agricultural soils of Huanghuai plain, China. Ecotoxicol Environ Saf 84:304–310

    Article  CAS  Google Scholar 

  • Yang JY et al (2017) Characterization, source apportionment, and risk assessment of polycyclic aromatic hydrocarbons in urban soil of Nanjing, China. J Soils Sediments 17:1116–1125

    Article  CAS  Google Scholar 

  • Yu GG et al (2014) Polycyclic aromatic hydrocarbons in urban soils of Hangzhou: status, distribution, sources, and potential risk. Environ Monitor Assess 186:2775–2784

    Article  CAS  Google Scholar 

  • Yu WW et al (2016) Identifications and seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) in the Yangtze River Estuary, China. Mar Pollut Bull 104:347–354

    Article  CAS  Google Scholar 

  • Yuan HG et al (2014) Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in surface soils of the Yellow River Delta, China. Mar Pollut Bull 83:258–264

    Article  CAS  Google Scholar 

  • Yunker MB et al (1996) Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents Seas. Environ Sci Technol 30:1310–1320

    Article  CAS  Google Scholar 

  • Yunker MB et al (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zeng QF et al (2018) Distribution, fate and risk assessment of PAHs in water and sediments from an aquaculture- and shipping-impacted subtropical lake, China. Chemosphere 201:612–620

    Article  CAS  Google Scholar 

  • Zhang P, Chen Y (2017) Polycyclic aromatic hydrocarbons contamination in surface soil of China: a review. Sci Total Environ 605–606:1011–1020

    Article  CAS  Google Scholar 

  • Zhang HL et al (2013) Spatial distribution and seasonal variation of polycyclic aromatic hydrocarbons (PAHs) contaminations in surface water from the Hun River, Northeast China. Environ Monitor Assess 185:1451–1462

    Article  CAS  Google Scholar 

  • Zhang JM et al (2017a) Polycyclic aromatic hydrocarbons in the water-SPM-sediment system from the middle reaches of Huai River, China: distribution, partitioning, origin tracing and ecological risk assessment. Environ Pollut 230:61–71

    Article  CAS  Google Scholar 

  • Zhang D et al (2017b) Spatial-temporal and multi-media variations of polycyclic aromatic hydrocarbons in a highly urbanized river from South China. Sci Total Environ 581–582:621–628

    Article  CAS  Google Scholar 

  • Zhao L et al (2014a) Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China. Ecotoxicol Environ Saf 108:120–128

    Article  CAS  Google Scholar 

  • Zhao XS et al (2014b) Spatial distribution and temporal trends of polycyclic aromatic hydrocarbons (PAHs) in water and sediment from Songhua River, China. Environ Geochem Health 36:131–143

    Article  CAS  Google Scholar 

  • Zhao X et al (2015) Distribution of polycyclic aromatic hydrocarbons in surface water from the upper reach of the Yellow River, Northwestern China. Environ Sci Pollut Res 22:6950–6956

    Article  CAS  Google Scholar 

  • Zheng BH et al (2016) Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere 149:91–100

    Article  CAS  Google Scholar 

  • Zhi H et al (2015) The fate of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in water from Poyang Lake, the largest freshwater lake in China. Chemosphere 119:1134–1140

    Article  CAS  Google Scholar 

  • Zhu LZ et al (2008) Distribution of polycyclic aromatic hydrocarbons in water, sediment and soil in drinking water resource of Zhejiang Province, China. J Hazard Mater 150:308–316

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (41771027, 41701585, 41961144027, 41907179 and 41471020), the Fundamental Research Fund for the Central Universities of China (17lgpy40), the Natural Science Foundation of Guangdong, China (2017A030310309), Provincial Special Fund for Economic Development (Marine Economic Development) (GDME2018E005), and the Scientific and Technological Innovation Project of the Water Sciences Department of Guangdong Province (2018–2021) and CRRP2019-09MY-Onodera from APN. The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/7053vP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Gao, L., Liang, Z. et al. Characteristics, Sources, and Risks of Polycyclic Aromatic Hydrocarbons in Topsoil and Surface Water from the Liuxi River Basin, South China. Arch Environ Contam Toxicol 78, 401–415 (2020). https://doi.org/10.1007/s00244-020-00711-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-020-00711-4

Navigation