Skip to main content

Advertisement

Log in

The advances in pyroptosis initiated by inflammasome in inflammatory and immune diseases

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Pyroptosis is a programmed and inflammatory cell death initiated by inflammasome. During pyroptosis, cytosolic pattern recognition receptors, apoptosis-associated speck-like protein and pro-Caspase-1 form activated inflammasome together. Caspase-1 activated by inflammasome results in generating an N-terminal cleavage product of gasdermin D (GSDMD), which is a major executor of pyroptosis. As a consequence of pyroptosis, a large number of pro-inflammatory cytokines are released including IL-1β and IL-18. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and absent in melanoma 2 (AIM2)-like receptors (ALRs) belong to cytosolic pattern recognition receptors and assemble inflammasomes by detecting host cell damage signals. Pyroptosis pathways are divided into canonical and non-canonical pathways according to the identification of damage signals by cytoplasmic protein sensors. Pyroptosis not only plays an important role in infection, but also plays a vital role in inflammatory immune diseases. This article reviews the advances research of pyroptosis initiated by inflammasome in inflammatory and immune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8(11):1812–25. https://doi.org/10.1111/j.1462-5822.2006.00751.x.

    Article  PubMed  Google Scholar 

  2. McKenzie BA, Mamik MK, Saito LB, Boghozian R, Monaco MC, Major EO, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci USA. 2018;115(26):E6065–E60746074. https://doi.org/10.1073/pnas.1722041115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ge X, Li W, Huang S, Yin Z, Xu X, Chen F, et al. The pathological role of NLRs and AIM2 inflammasome-mediated pyroptosis in damaged blood-brain barrier after traumatic brain injury. Brain Res. 2018;1697:10–20. https://doi.org/10.1016/j.brainres.2018.06.008.

    Article  CAS  PubMed  Google Scholar 

  4. Lee S, Hirohama M, Noguchi M, Nagata K, Kawaguchi A. Influenza A virus infection triggers pyroptosis and apoptosis of respiratory epithelial cells through the type I interferon signaling pathway in a mutually exclusive manner. J Virol. 2018. https://doi.org/10.1128/JVI.00396-18.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guo Q, Wu Y, Hou Y, Liu Y, Liu T, Zhang H, et al. Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 inflammasomes are associated with autoimmune thyroiditis. Front Immunol. 2018;9:1197. https://doi.org/10.3389/fimmu.2018.01197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Y, Jia L, Shen J, Wang Y, Fu Z, Su S-A, et al. Cathepsin B aggravates coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting pyroptosis. PLoS Pathog. 2018;14(1):e1006872. https://doi.org/10.1371/journal.ppat.1006872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang L, Huang Z, Xing R, Li X, Yin S, Mao J, et al. Increased HIF-1α in knee osteoarthritis aggravate synovial fibrosis via fibroblast-like synoviocyte pyroptosis. Oxid Med Cell Longev. 2019;2019:6326517. https://doi.org/10.1155/2019/6326517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J, Endl E, Hornung V. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J Biol Chem. 2016;291(1):103–9. https://doi.org/10.1074/jbc.C115.700492.

    Article  CAS  PubMed  Google Scholar 

  9. Pan J, Han L, Guo J, Wang X, Liu D, Tian J, et al. AIM2 accelerates the atherosclerotic plaque progressions in ApoE-/- mice. Biochem Biophys Res Commun. 2018;498(3):487–94. https://doi.org/10.1016/j.bbrc.2018.03.005.

    Article  CAS  PubMed  Google Scholar 

  10. Tan M-S, Tan L, Jiang T, Zhu X-C, Wang H-F, Jia C-D, Yu J-T. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis. 2014;5:e1382. https://doi.org/10.1038/cddis.2014.348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kovarova M, Hesker PR, Jania L, Nguyen M, Snouwaert JN, Xiang Z, et al. NLRP1-dependent pyroptosis leads to acute lung injury and morbidity in mice. J Immunol. 2012;189(4):2006–16. https://doi.org/10.4049/jimmunol.1201065.

    Article  CAS  PubMed  Google Scholar 

  12. Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet. 2006;38(2):240–4. https://doi.org/10.1038/ng1724.

    Article  CAS  PubMed  Google Scholar 

  13. Masters SL, Gerlic M, Metcalf D, Preston S, Pellegrini M, O’Donnell JA, et al. NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity. 2012;37(6):1009–233. https://doi.org/10.1016/j.immuni.2012.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007;14(9):1583–9. https://doi.org/10.1038/sj.cdd.4402195.

    Article  CAS  PubMed  Google Scholar 

  15. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72. https://doi.org/10.1074/jbc.C200651200.

    Article  CAS  PubMed  Google Scholar 

  16. Faustin B, Lartigue L, Bruey J-M, Luciano F, Sergienko E, Bailly-Maitre B, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell. 2007;25(5):713–24. https://doi.org/10.1016/j.molcel.2007.01.032.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao D, Wu Y, Zhuang J, Xu C, Zhang F. Activation of NLRP1 and NLRP3 inflammasomes contributed to cyclic stretch-induced pyroptosis and release of IL-1β in human periodontal ligament cells. Oncotarget. 2016;7(42):68292–302. https://doi.org/10.18632/oncotarget.11944.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liao H, Wang H, Rong X, Li E, Xu R-H, Peng Y. Mesenchymal stem cells attenuate radiation-induced brain injury by inhibiting microglia pyroptosis. Biomed Res Int. 2017;2017:1948985. https://doi.org/10.1155/2017/1948985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang B, Wei W, Qiu J. ALK is required for NLRP3 inflammasome activation in macrophages. Biochem Biophys Res Commun. 2018;501(1):246–52. https://doi.org/10.1016/j.bbrc.2018.04.226.

    Article  CAS  PubMed  Google Scholar 

  20. Luo B, Huang F, Liu Y, Liang Y, Wei Z, Ke H, et al. NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy. Front Physiol. 2017;8:519. https://doi.org/10.3389/fphys.2017.00519.

    Article  PubMed  PubMed Central  Google Scholar 

  21. He Y, Zeng MY, Yang D, Motro B, Núñez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 2016;530(7590):354–7. https://doi.org/10.1038/nature16959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Lv X, Hu Z, Ye X, Zheng X, Ding Y, et al. Protection of Mcc950 against high-glucose-induced human retinal endothelial cell dysfunction. Cell Death Dis. 2017;8(7):e2941. https://doi.org/10.1038/cddis.2017.308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang T, Lang X, Xu C, Wang X, Gong T, Yang Y, et al. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat Commun. 2017;8(1):202. https://doi.org/10.1038/s41467-017-00227-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu X, Ren G, Zhou R, Ge J, Chen F-H. The role of Ca2+ in acid-sensing ion channel 1a-mediated chondrocyte pyroptosis in rat adjuvant arthritis. Lab Invest. 2019;99(4):499–513. https://doi.org/10.1038/s41374-018-0135-3.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Luan J, Chen W, Fan J, Nan Y, Wang Y, et al. Mesoporous silica nanoparticles induced hepatotoxicity via NLRP3 inflammasome activation and caspase-1-dependent pyroptosis. Nanoscale. 2018;10(19):9141–52. https://doi.org/10.1039/c8nr00554k.

    Article  CAS  PubMed  Google Scholar 

  26. Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 2018;9(2):171. https://doi.org/10.1038/s41419-017-0257-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10(3):210–5. https://doi.org/10.1038/nri2725.

    Article  CAS  PubMed  Google Scholar 

  28. Tan C-C, Zhang J-G, Tan M-S, Chen H, Meng D-W, Jiang T, et al. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J Neuroinflammation. 2015;12:18. https://doi.org/10.1186/s12974-014-0233-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious. PLoS Pathog. 2011;7(12):e1002452. https://doi.org/10.1371/journal.ppat.1002452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Byrne BG, Dubuisson J-F, Joshi AD, Persson JJ, Swanson MS. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. MBio. 2013;4(1):e00620–e712. https://doi.org/10.1128/mBio.00620-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010;11(12):1136–42. https://doi.org/10.1038/ni.1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maltez VI, Tubbs AL, Cook KD, Aachoui Y, Falcone EL, Holland SM, et al. Inflammasomes coordinate pyroptosis and natural killer cell cytotoxicity to clear infection by a ubiquitous environmental bacterium. Immunity. 2015;43(5):987–97. https://doi.org/10.1016/j.immuni.2015.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao Y, Shao F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev. 2015;265(1):85–102. https://doi.org/10.1111/imr.12293.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science. 2015;350(6259):404–9. https://doi.org/10.1126/science.aac5789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, et al. Structural and biochemical basis for induced self-propagation of NLRC4. Science. 2015;350(6259):399–404. https://doi.org/10.1126/science.aac5489.

    Article  CAS  PubMed  Google Scholar 

  36. Ryu J-C, Kim M-J, Kwon Y, Oh J-H, Yoon SS, Shin SJ, et al. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol. 2017;10(3):757–74. https://doi.org/10.1038/mi.2016.73.

    Article  CAS  PubMed  Google Scholar 

  37. Choubey D, Panchanathan R. Absent in melanoma 2 proteins in SLE. Clin Immunol. 2017;176:42–8. https://doi.org/10.1016/j.clim.2016.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yogarajah T, Ong KC, Perera D, Wong KT. AIM2 inflammasome-mediated pyroptosis in enterovirus A71-infected neuronal cells restricts viral replication. Sci Rep. 2017;7(1):5845. https://doi.org/10.1038/s41598-017-05589-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Costa Franco MMS, Marim FM, Alves-Silva J, Cerqueira D, Rungue M, Tavares IP, Oliveira SC. AIM2 senses Brucella abortus DNA in dendritic cells to induce IL-1β secretion, pyroptosis and resistance to bacterial infection in mice. Microbes Infect. 2019;21(2):85–93. https://doi.org/10.1016/j.micinf.2018.09.001.

    Article  CAS  PubMed  Google Scholar 

  40. Sagulenko V, Vitak N, Vajjhala PR, Vince JE, Stacey KJ. Caspase-1 is an apical caspase leading to caspase-3 cleavage in the AIM2 inflammasome response, independent of caspase-8. J Mol Biol. 2018;430(2):238–47. https://doi.org/10.1016/j.jmb.2017.10.028.

    Article  CAS  PubMed  Google Scholar 

  41. Eichholz K, Bru T, Tran TTP, Fernandes P, Welles H, Mennechet FJD, et al. Immune-complexed adenovirus induce AIM2-mediated pyroptosis in human dendritic cells. PLoS Pathog. 2016;12(9):e1005871. https://doi.org/10.1371/journal.ppat.1005871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meunier E, Wallet P, Dreier RF, Costanzo S, Anton L, Rühl S, et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat Immunol. 2015;16(5):476–84. https://doi.org/10.1038/ni.3119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Woo S-R, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MYK, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5):830–42. https://doi.org/10.1016/j.immuni.2014.10.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu Q, Zheng M, Balakrishnan A, Karki R, Kanneganti T-D. Gasdermin D promotes AIM2 inflammasome activation and is required for host protection against Francisella novicida. J Immunol. 2018;201(12):3662–8. https://doi.org/10.4049/jimmunol.1800788.

    Article  CAS  PubMed  Google Scholar 

  45. Man SM, Karki R, Sasai M, Place DE, Kesavardhana S, Temirov J, et al. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes. Cell. 2016;167(2):382–396.e17. https://doi.org/10.1016/j.cell.2016.09.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Corrales L, Woo S-R, Williams JB, McWhirter SM, Dubensky TW, Gajewski TF. Antagonism of the STING pathway via activation of the AIM2 inflammasome by intracellular DNA. J Immunol. 2016;196(7):3191–8. https://doi.org/10.4049/jimmunol.1502538.

    Article  CAS  PubMed  Google Scholar 

  47. Liu BC, Sarhan J, Panda A, Muendlein HI, Ilyukha V, Coers J, et al. Constitutive interferon maintains GBP expression required for release of bacterial components upstream of pyroptosis and anti-DNA responses. Cell Rep. 2018;24(1):155–168.e5. https://doi.org/10.1016/j.celrep.2018.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yuan J, Zhu M, Deng S, Fan S, Xu H, Liao J, et al. Classical swine fever virus induces pyroptosis in the peripheral lymphoid organs of infected pigs. Virus Res. 2018;250:37–42. https://doi.org/10.1016/j.virusres.2018.04.004.

    Article  CAS  PubMed  Google Scholar 

  49. Mandal P, Feng Y, Lyons JD, Berger SB, Otani S, DeLaney A, et al. Caspase-8 collaborates with caspase-11 to drive tissue damage and execution of endotoxic shock. Immunity. 2018;49(1):42–55.e6. https://doi.org/10.1016/j.immuni.2018.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lacey CA, Mitchell WJ, Dadelahi AS, Skyberg JA. Caspase-1 and caspase-11 mediate pyroptosis, inflammation, and control of brucella joint infection. Infect Immun. 2018. https://doi.org/10.1128/IAI.00361-18.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ritter JL, Genco CA. Neisseria gonorrhoeae-induced inflammatory pyroptosis in human macrophages is dependent on intracellular gonococci and lipooligosaccharide. J Cell Death. 2018;11:1179066017750902. https://doi.org/10.1177/1179066017750902.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5. https://doi.org/10.1038/nature15514.

    Article  CAS  PubMed  Google Scholar 

  53. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–71. https://doi.org/10.1038/nature15541.

    Article  CAS  PubMed  Google Scholar 

  54. Ran S, Chu M, Gu S, Wang J, Liang J. Enterococcus faecalis induces apoptosis and pyroptosis of human osteoblastic MG63 cells via the NLRP3 inflammasome. Int Endod J. 2019;52(1):44–53. https://doi.org/10.1111/iej.12965.

    Article  CAS  PubMed  Google Scholar 

  55. Nascimento DO, Vieira-de-Abreu A, Arcanjo AF, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Integrin αDβ2 (CD11d/CD18) modulates leukocyte accumulation, pathogen clearance, and pyroptosis in experimental salmonella typhimurium infection. Front Immunol. 2018;9:1128. https://doi.org/10.3389/fimmu.2018.01128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rashad S, Niizuma K, Sato-Maeda M, Fujimura M, Mansour A, Endo H, et al. Early BBB breakdown and subacute inflammasome activation and pyroptosis as a result of cerebral venous thrombosis. Brain Res. 2018;1699:54–68. https://doi.org/10.1016/j.brainres.2018.06.029.

    Article  CAS  PubMed  Google Scholar 

  57. Lin X, Ye H, Siaw-Debrah F, Pan S, He Z, Ni H, et al. AC-YVAD-CMK inhibits pyroptosis and improves functional outcome after intracerebral hemorrhage. Biomed Res Int. 2018;2018:3706047. https://doi.org/10.1155/2018/3706047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang X, Pan J, Liu H, Zhang M, Liu D, Lu L, et al. AIM2 gene silencing attenuates diabetic cardiomyopathy in type 2 diabetic rat model. Life Sci. 2019;221:249–58. https://doi.org/10.1016/j.lfs.2019.02.035.

    Article  CAS  PubMed  Google Scholar 

  59. Yang F, Qin Y, Lv J, Wang Y, Che H, Chen X, et al. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis. 2018;9(10):1000. https://doi.org/10.1038/s41419-018-1029-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mathews RJ, Robinson JI, Battellino M, Wong C, Taylor JC, Eyre S, et al. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis. 2014;73(6):1202–10. https://doi.org/10.1136/annrheumdis-2013-203276.

    Article  CAS  PubMed  Google Scholar 

  61. Zhao J, Wang H, Dai C, Wang H, Zhang H, Huang Y, et al. P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis Rheum. 2013;65(12):3176–85. https://doi.org/10.1002/art.38174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ma Z-Z, Sun H-S, Lv J-C, Guo L, Yang Q-R. Expression and clinical significance of the NEK7-NLRP3 inflammasome signaling pathway in patients with systemic lupus erythematosus. J Inflamm (Lond). 2018;15:16. https://doi.org/10.1186/s12950-018-0192-9.

    Article  CAS  PubMed Central  Google Scholar 

  63. Vakrakou AG, Boiu S, Ziakas PD, Xingi E, Boleti H, Manoussakis MN. Systemic activation of NLRP3 inflammasome in patients with severe primary Sjögren’s syndrome fueled by inflammagenic DNA accumulations. J Autoimmun. 2018;91:23–33. https://doi.org/10.1016/j.jaut.2018.02.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (No. U1803129, 81803538 and 81673444).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingling Zhang or Wei Wei.

Additional information

Responsible Editor: Dr. John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Zhang, F., Zhang, L. et al. The advances in pyroptosis initiated by inflammasome in inflammatory and immune diseases. Inflamm. Res. 69, 159–166 (2020). https://doi.org/10.1007/s00011-020-01315-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01315-3

Keywords

Navigation